Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent.

Cardiovasc Eng Technol

Biomechanics Research Centre (BMEC), Biomedical Engineering, College of Engineering and Informatics, NUI Galway, Galway, Ireland.

Published: December 2015

Over the last decade, there has been a significant volume of research focussed on the utilization of biodegradable polymers such as poly-L-lactide-acid (PLLA) for applications associated with cardiovascular disease. More specifically, there has been an emphasis on upgrading current clinical shortfalls experienced with conventional bare metal stents and drug eluting stents. One such approach, the adaption of fully formed polymeric stents has led to a small number of products being commercialized. Unfortunately, these products are still in their market infancy, meaning there is a clear non-occurrence of long term data which can support their mechanical performance in vivo. Moreover, the load carry capacity and other mechanical properties essential to a fully optimized polymeric stent are difficult, timely and costly to establish. With the aim of compiling rapid and representative performance data for specific stent geometries, materials and designs, in addition to reducing experimental timeframes, Computational bench testing via finite element analysis (FEA) offers itself as a very powerful tool. On this basis, the research presented in this paper is concentrated on the finite element simulation of the mechanical performance of PLLA, which is a fully biodegradable polymer, in the stent application, using a non-linear viscous material model. Three physical stent geometries, typically used for fully polymeric stents, are selected, and a comparative study is performed in relation to their short-term mechanical performance, with the aid of experimental data. From the simulated output results, an informed understanding can be established in relation to radial strength, flexibility and longitudinal resistance, that can be compared with conventional permanent metal stent functionality, and the results show that it is indeed possible to generate a PLLA stent with comparable and sufficient mechanical performance. The paper also demonstrates the attractiveness of FEA as a tool for establishing fundamental mechanical characteristics of polymeric stent performance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13239-015-0235-9DOI Listing

Publication Analysis

Top Keywords

mechanical performance
20
polymeric stent
12
computational bench
8
bench testing
8
short-term mechanical
8
stent
8
polymeric stents
8
stent geometries
8
finite element
8
mechanical
7

Similar Publications

This perspective work examines the current advancements in integrated CO capture and electrochemical conversion technologies, comparing the emerging methods of (1) electrochemical reactive capture (eRCC) though amine- and (bi)carbonate-mediated processes and (2) direct (flue gas) adsorptive capture and conversion (ACC) with the conventional approach of sequential carbon capture and conversion (SCCC). We initially identified and discussed a range of cell-level technological bottlenecks inherent to eRCC and ACC including, but not limited to, mass transport limitations of reactive species, limitation of dimerization, impurity effects, inadequate generation of CO to sustain industrially relevant current densities, and catalyst instabilities with respect to some eRCC electrolytes, amongst others. We followed this with stepwise perspectives on whether these are considered intrinsic challenges of the technologies - otherwise recommendations were disclosed where appropriate.

View Article and Find Full Text PDF

Background: Multidrug-resistant Klebsiella pneumoniae (MDR-KP) infections pose a significant global healthcare challenge, particularly due to the high mortality risk associated with septic shock. This study aimed to develop and validate a machine learning-based model to predict the risk of MDR-KP-associated septic shock, enabling early risk stratification and targeted interventions.

Methods: A retrospective analysis was conducted on 1,385 patients with MDR-KP infections admitted between January 2019 and June 2024.

View Article and Find Full Text PDF

Lightweight Retinal Layer Segmentation With Global Reasoning.

IEEE Trans Instrum Meas

May 2024

School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China.

Automatic retinal layer segmentation with medical images, such as optical coherence tomography (OCT) images, serves as an important tool for diagnosing ophthalmic diseases. However, it is challenging to achieve accurate segmentation due to low contrast and blood flow noises presented in the images. In addition, the algorithm should be light-weight to be deployed for practical clinical applications.

View Article and Find Full Text PDF

Purpose: Lung ultrasound (LUS) is increasingly utilized in the field of anesthesiology due to its focused, quick application and the advantage of not exposing patients to ionizing radiation. This study aims to analyze the status and trends in this area from a macroscopic perspective.

Methods: A bibliometric analysis was conducted using the Web of Science (WoS) Core Collection.

View Article and Find Full Text PDF

Background: Community-acquired pneumonia (CAP) poses a significant health threat to the elderly population, leading to high morbidity and mortality rates. Serum ferritin, a critical indicator of iron metabolism, plays a pivotal role in inflammation and immune regulation. Nevertheless, its specific prognostic relevance in elderly patients with CAP remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!