The tetrapyridyl ligand bbpya (bbpya=N,N-bis(2,2'-bipyrid-6-yl)amine) and its mononuclear coordination compound [Fe(bbpya)(NCS)2 ] (1) were prepared. According to magnetic susceptibility, differential scanning calorimetry fitted to Sorai's domain model, and powder X-ray diffraction measurements, 1 is low-spin at room temperature, and it exhibits spin crossover (SCO) at an exceptionally high transition temperature of T1/2 =418 K. Although the SCO of compound 1 spans a temperature range of more than 150 K, it is characterized by a wide (21 K) and dissymmetric hysteresis cycle, which suggests cooperativity. The crystal structure of the LS phase of compound 1 shows strong NH⋅⋅⋅S intermolecular H-bonding interactions that explain, at least in part, the cooperative SCO behavior observed for complex 1. DFT and CASPT2 calculations under vacuum demonstrate that the bbpya ligand generates a stronger ligand field around the iron(II) core than its analogue bapbpy (N,N'-di(pyrid-2-yl)-2,2'-bipyridine-6,6'-diamine); this stabilizes the LS state and destabilizes the HS state in 1 compared with [Fe(bapbpy)(NCS)2 ] (2). Periodic DFT calculations suggest that crystal-packing effects are significant for compound 2, in which they destabilize the HS state by about 1500 cm(-1) . The much lower transition temperature found for the SCO of 2 compared to 1 appears to be due to the combined effects of the different ligand field strengths and crystal packing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201503119 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!