Traditional wet detention ponds and sand filters remove particles efficiently, whereas only a minor part of the dissolved and bioavailable load is removed. To improve the retention of dissolved substances, we tested crushed concrete as a filter material simultaneously with a traditional sand filter placed after an existing wet pond. The particulate fractions (particles, organic matter, phosphorus, and heavy metals) were removed efficiently in the pond and both filter materials, with the concrete filter often being best seen over a year. Dissolved heavy metals (lead (Pb), nickel (Ni), copper (Cu), chromium (Cr), and cadmium (Cd)) were largely retained, though a washout was observed from the pond (Ni and Cu), concrete filter (Cr), and sand filter (Ni) during the first month. The pond only retained total dissolved phosphorus (TDP) during summer. Crushed concrete and sand had a high (>70%) retention of TDP within the first months of operation, but the retention dropped in both filters due to a large oil load into the system (4 kg impermeable ha(-1) in 1 month). The poor retention might to some degree be due to mineralization processes turning particulate phosphorus (PP) into TDP. The massive oil load was retained efficiently (99.3%) in the pond and both filters, clearly illustrating that both filter materials were able to retain either oil or TDP. An additional pilot study showed that at residence times of 1 h, crushed concrete bound 90% TDP whereas sand only bound 22% TDP. Retention of TDP and PP decreased with shorter residence time in both materials, but fastest in sand.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-015-4975-7DOI Listing

Publication Analysis

Top Keywords

crushed concrete
16
concrete filter
12
wet detention
8
concrete sand
8
sand filter
8
heavy metals
8
filter materials
8
phosphorus tdp
8
retention tdp
8
oil load
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!