Background: ATP-gated P2X3 receptors are important transducers of nociceptive stimuli and are almost exclusively expressed by sensory ganglion neurons. In mouse trigeminal ganglion (TG), P2X3 receptor function is unexpectedly enhanced by pharmacological block of natriuretic peptide receptor-A (NPR-A), outlining a potential inhibitory role of endogenous natriuretic peptides in nociception mediated by P2X3 receptors. Lack of change in P2X3 protein expression indicates a complex modulation whose mechanisms for downregulating P2X3 receptor function remain unclear.

Results: To clarify this process in mouse TG cultures, we suppressed NPR-A signaling with either siRNA of the endogenous agonist BNP, or the NPR-A blocker anantin. Thus, we investigated changes in P2X3 receptor distribution in the lipid raft membrane compartment, their phosphorylation state, as well as their function with patch clamping. Delayed onset of P2X3 desensitization was one mechanism for the anantin-induced enhancement of P2X3 activity. Anantin application caused preferential P2X3 receptor redistribution to the lipid raft compartment and decreased P2X3 serine phosphorylation, two phenomena that were not interdependent. An inhibitor of cGMP-dependent protein kinase and siRNA-mediated knockdown of BNP mimicked the effect of anantin.

Conclusions: We demonstrated that in mouse trigeminal neurons endogenous BNP acts on NPR-A receptors to determine constitutive depression of P2X3 receptor function. Tonic inhibition of P2X3 receptor activity by BNP/NPR-A/PKG pathways occurs via two distinct mechanisms: P2X3 serine phosphorylation and receptor redistribution to non-raft membrane compartments. This novel mechanism of receptor control might be a target for future studies aiming at decreasing dysregulated P2X3 receptor activity in chronic pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650943PMC
http://dx.doi.org/10.1186/s12990-015-0074-6DOI Listing

Publication Analysis

Top Keywords

p2x3 receptor
28
p2x3
15
p2x3 receptors
12
receptor function
12
receptor
9
natriuretic peptide
8
phosphorylation state
8
mouse trigeminal
8
lipid raft
8
receptor redistribution
8

Similar Publications

Chronic cough is a distressing and prevalent symptom in interstitial lung disease (ILD), significantly impairing quality of life (QoL) and contributing to disease progression, particularly in idiopathic pulmonary fibrosis (IPF). It is associated with physical discomfort, psychological distress, and social isolation and is often refractory to conventional therapies. The pathophysiology of cough in ILD is complex and multifactorial, involving neural hypersensitivity, structural lung changes, inflammatory processes, and comorbid conditions such as gastroesophageal reflux disease (GERD).

View Article and Find Full Text PDF

Structural comparisons of human and mouse fungiform taste buds.

Chem Senses

January 2025

Dept. Cell & Devel. Biology, Rocky Mountain Taste & Smell Center, Univ. Colorado School of Medicine, Aurora, CO.

Taste buds are commonly studied in rodent models, but some differences exist between mice and humans in terms of gustatory mechanisms and sensitivities. Whether these functional differences are reflected in structural differences between species is unclear. Using immunofluorescent image stacks, we compared morphological and molecular characteristics of mouse and human fungiform taste buds.

View Article and Find Full Text PDF

Mechanistic insights into the selective targeting of P2X3 receptor by camlipixant antagonist.

J Biol Chem

December 2024

Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN-47907, USA. Electronic address:

ATP-activated P2X3 receptors play a pivotal role in chronic cough, affecting more than 10% of the population. Despite the challenges posed by the highly conserved structure of P2X receptors, efforts to develop selective drugs targeting P2X3 have led to the development of camlipixant, a potent, selective P2X3 antagonist. However, the mechanisms of receptor desensitization, ion permeation, and structural basis of camlipixant binding to P2X3 remain unclear.

View Article and Find Full Text PDF

Adipose stem-cell-derived microvesicles ameliorate long-term bladder ischemia-induced bladder underactivity.

J Formos Med Assoc

December 2024

Department of Life Science, College of Science, National Taiwan Normal University, 162, Section 1, Heping E. Rd., Taipei, 106, Taiwan. Electronic address:

Background/purpose: The mechanism for long-term hypoxia/ischemia induced bladder underactivity is uncertain. It requires an effectively therapeutic treatment. Therefore, we determined the pathophysiologic mechanisms of long-term bilateral partial iliac arterial occlusion (BPAO)-induced bladder underactivity and explored the therapeutic potential of adipose-derived stem cells (ADSCs) and ADSC-derived microvesicles (MVs) on BPAO-induced bladder dysfunction.

View Article and Find Full Text PDF

Purines are important mediators of intercellular communication in the enteric nervous system (ENS) that participate in physiological gut functions and disease. Purinergic transmission is prominent in mechanisms of crosstalk between enteric neurons and glia where enteric glia exhibit high responsiveness to adenosine diphosphate (ADP) through P2Y receptors and neurons to adenosine triphosphate (ATP) through P2X receptors. Despite functional data suggesting that enteric glia are the primary site of P2Y expression in the ENS, gene sequencing suggests that P2Y expression is more enriched in neurons than glia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!