Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acquired or de novo resistance to the selective estrogen receptor modulators tamoxifen and fulvestrant (ICI) is a major barrier to successful treatment of breast cancer. Gene expression patterns in tamoxifen resistant (TamR-MCF-7) cells were compared to their parental cells (MCF-7L) to identify an aberrantly regulated metabolic pathway. TamR-MCF-7 cells are cross resistant to ICI and doxorubicin, and have increased mitochondrial DNA. A small subset of genes had altered expression in TamR-MCF-7 relative to MCF-7L cells. One of the genes, pyruvate dehydrogenase kinase-4 (PDK4), phosphorylates pyruvate dehydrogenase (PDH). PDK4 expression was elevated in TamR-MCF-7 cells; this result was also observed in a second model of acquired antiestrogen resistance. PDK4 expression is controlled in part by glucocorticoid response elements in the PDK4 gene promoter. In MCF-7L cells, PDK4 mRNA expression was insensitive to glucocorticoid receptor agonists, while dexamethasone dramatically increased PDK4 expression in TamR-MCF-7 cells. Using siRNA to knock down PDK4 expression increased TamR-MCF-7 sensitivity to ICI; in contrast adapting cells to growth in glucose depleted media did not affect ICI sensitivity. Despite TamR-MCF-7 cells high levels of PDK4 mRNA relative to MCF-7L, TamR-MCF-7 cells have increased PDH activity. Wild type MCF-7 cells are reported to be heterozygous for a G to A mutation that results in a substitution of threonine for alanine near PDK4's catalytic site. We found loss of heterozygosity in TamR-MCF-7 cells; TamR-MCF-7 are homozygous for the wild type allele. These data support a role for altered regulation of PDH by PDK4 and altered substrate utilization in the development of drug resistance in human breast cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641142 | PMC |
http://dx.doi.org/10.1186/s40064-015-1444-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!