Self-assembled monolayers (SAMs) were prepared on gold substrates from an unsymmetrical partially fluorinated spiroalkanedithiol adsorbate with the specific structure of [CH3(CH2)7][CF3(CF2)7(CH2)8]C[CH2SH]2 (SADT) and compared to SAMs formed from the semifluorinated monothiol F8H10SH [CF3(CF2)7(CH2)10SH] of analogous chain length and n-octadecanethiol. The adsorbate with two alkyl chains, one terminally fluorinated and the other nonfluorinated, was designed to form monolayers in which the bulky helical fluorocarbon segments assemble on top of an underlying layer of well-packed trans-extended alkyl chains. Different combinations of deposition solvents and temperatures were used to produce the bidentate SAMs. Characterization of the resulting monolayers revealed that SAMs formed in DMF at room temperature allow complete binding of the sulfur headgroups to the surface and exhibit higher conformational order than those produced using alternative solvent/temperature combinations. The reduced film thicknesses and enhanced wettability of the SADT SAMs, as compared to the SAMs generated from F8H10SH, suggest loose packing and an increase in the tilt of the terminal fluorocarbon chain segments. Nevertheless, the density of the underlying hydrocarbon chains of the SADT SAMs was higher than that of the F8H10SH SAMs, owing to the double-chained structure of the new adsorbate. The conformational orders of the SAM systems were observed to decrease as follows: C18SH > F8H10SH > SADT. However, the SAMs formed from this new double-chained bidentate adsorbate in DMF expose a fluorinated interface with a relatively low surface roughness, as determined by contact-angle hysteresis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.5b03392 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!