Interaction studies and cleavage activity experiments were carried out between plasmid DNA and a series of histidine-based lipopeptides. Specific fluorescent probes (ethidium bromide, Hoechst 33342, and pyrene) were used to monitor intercalation, minor groove binding, and self-assembly of lipopeptides, respectively. Association between DNA and lipopeptides was thus evidenced, highlighting the importance of both histidine and hydrophobic tail in the interaction process. DNA cleavage in the presence of lipopeptides was then detected by gel electrophoresis and quantified, showing the importance of histidine and the involvement of its side-chain imidazole in the hydrolysis mechanism. These systems could then be developed as synthetic nucleases while raising concern of introducing histidine in the design of lipopeptide-based transfection vectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.5b00542 | DOI Listing |
Bioconjug Chem
December 2015
Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623 (CNRS/Université Paul Sabatier), Toulouse 31062, France.
Interaction studies and cleavage activity experiments were carried out between plasmid DNA and a series of histidine-based lipopeptides. Specific fluorescent probes (ethidium bromide, Hoechst 33342, and pyrene) were used to monitor intercalation, minor groove binding, and self-assembly of lipopeptides, respectively. Association between DNA and lipopeptides was thus evidenced, highlighting the importance of both histidine and hydrophobic tail in the interaction process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!