We investigate the influence of a solid core and of the cross-link density on the compression of microgel particles at oil-water interfaces by means of compression isotherms and computer simulations. We investigate particles with different morphology, namely core-shell particles containing a solid silica core surrounded by a cross-linked polymer shell of poly(N-isopropylacrylamide), and the corresponding hollow microgels where the core was dissolved. The polymer shell contains different amounts of cross-linker. The compression isotherms show that the removal of the core leads to an increase of the surface pressure at low compression, and the same effect can be observed when the polymer cross-link density is decreased. Low cross-link density and a missing core thus facilitate spreading of the polymer chains at the interface and, at high compression, hinder the transition to close hexagonal packing. Furthermore, the compression modulus only depends on the cross-link density at low compression, and no difference can be observed between the core-shell particles and the corresponding hollow microgels. It is especially remarkable that a low cross-link density leads to a high compression modulus at low compression, while this behavior is reversed at high compression. Thus, the core does not influence the particle behavior until the polymer shell is highly compressed and the core is directly exposed to the pressure. This is related to an enhanced spreading of polymer chains at the interface and thus high adsorption energy. These conclusions are fully supported by computer simulations which show that the cross-link density of the polymer shell defines the degree of deformation at the interface. Additionally, the core restricts the spreading of polymer chains at the interface. These results illustrate the special behavior of soft microgels at liquid interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b03530DOI Listing

Publication Analysis

Top Keywords

cross-link density
24
polymer shell
16
low compression
12
spreading polymer
12
polymer chains
12
chains interface
12
high compression
12
compression
10
oil-water interfaces
8
core
8

Similar Publications

Multi-scale inferomedial femoral neck bone quality in type 2 diabetes patients with fragility fracture.

Bone

December 2024

Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India. Electronic address:

Both trabecular and cortical bone undergo changes at multiple scales. We previously demonstrated the multi-scale changes in trabecular bone quality that contribute to bone fragility in type 2 diabetes (T2D). The link between increased fragility in T2D and multi-scale changes in cortical bone and their interaction with glycation remains unclear.

View Article and Find Full Text PDF

We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA--K, KAAA--K, and HAAA--K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups.

View Article and Find Full Text PDF

In tissue engineering, developing suitable printing inks for fabricating hydrogel scaffolds via 3D printing is of high importance and requires extensive investigation. Currently, gelatin methacryloyl (GelMA)-based inks have been widely used for the construction of 3D-printed hydrogel scaffolds and cell-scaffold constructs for human tissue regeneration. However, many studies have shown that GelMA inks at low polymer concentrations had poor printability, and printed structures exhibited inadequate fidelity.

View Article and Find Full Text PDF

The response of soft materials to an imposed oscillatory stress is typically frequency dependent, with the most utilized frequency range falling in the range of 10-10 rad/s. In contrast to most conventional contact techniques for measuring material elasticity, like tensile or shear rheology and atomic force microscopy, or invasive techniques using probes, such as microrheology, Brillouin light spectroscopy (BLS) offers an optical, noncontact, label-free, submicron resolution and three-dimensional (3D) mapping approach to access the mechanical moduli at GHz frequencies. Currently, the correlation between the experimental viscoelastic (at lower frequencies) and elastic (at higher frequencies) moduli has fundamental and practical relevance, but remains unclear.

View Article and Find Full Text PDF

Peptide conjugates furnished with a 2,5-diaryltetrazolecarbonyl tag at the C-terminal lysine, which we call peptide--K, were found to undergo efficient cross-linking of Asp, Glu, Asn, and Gln residues to transient nitrile-imine intermediates produced by photodissociation and collision-induced dissociation (CID) of the tetrazole ring in gas-phase ions. UV photodissociation (UVPD) at 213 nm achieved cross-linking conversion yields of 37 and 61% for DAAAK--K and EAAAK--K, respectively. The yields for NAAAK--K and QAAAK--K were 29 and 57%, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!