A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Frozen Density Embedding with External Orthogonality in Delocalized Covalent Systems. | LitMetric

Frozen Density Embedding with External Orthogonality in Delocalized Covalent Systems.

J Chem Theory Comput

Department of Chemistry, The Pennsylvania State University , 104 Chemistry Building, University Park, Pennsylvania 16802, United States.

Published: July 2015

Frozen density embedding (FDE) has become a popular subsystem density functional theory (DFT) method for systems with weakly overlapping charge densities. The failure of this method for strongly interacting and covalent systems is due to the approximate kinetic energy density functional (KEDF), although the need for approximate KEDFs may be eliminated if each subsystem's Kohn-Sham (KS) orbitals are orthogonal to the other, termed external orthogonality (EO). We present an implementation of EO into the FDE framework within the Amsterdam density functional program package, using the level-shift projection operator method. We generalize this method to remove the need for orbital localization schemes and to include multiple subsystems, and we show that the exact KS-DFT energies and densities may be reproduced through iterative freeze-and-thaw cycles for a number of systems, including a charge delocalized benzene molecule starting from atomic subsystems. Finally, we examine the possibility of a truncated basis for systems with and without charge delocalization, and found that subsystems require a basis that allows them to correctly describe the supermolecular delocalized orbitals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.5b00293DOI Listing

Publication Analysis

Top Keywords

density functional
12
frozen density
8
density embedding
8
external orthogonality
8
covalent systems
8
systems
5
embedding external
4
orthogonality delocalized
4
delocalized covalent
4
systems frozen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!