Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bread staling reduction is a very important issue for the food industry. A fibre with high water holding capacity, extracted from potato peel, was studied for its ability to reduce bread staling even if employed at low level (0.4 g fibre/100 g flour). Physico-chemical properties (water activity, moisture content, frozen water content, amylopectin retrogradation) and (1)H Nuclear Magnetic Resonance molecular mobility were characterised in potato fibre added bread over 7 days of storage. Potato fibre addition in bread slightly affected water activity and moisture content, while increased frozen water content and resulted in a softer bread crumb, more importantly when the optimal amount of water was used in the formulation. Potato fibre also reduced (1)H NMR molecular mobility changes in bread crumb during storage. Potato fibre addition in bread contributed to reduce bread staling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2015.03.092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!