Simulating the reactions of CO2 in aqueous monoethanolamine solution by reaction ensemble Monte Carlo using the continuous fractional component method.

J Chem Theory Comput

Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands.

Published: June 2015

Molecular simulations were used to compute the equilibrium concentrations of the different species in CO2/monoethanolamine solutions for different CO2 loadings. Simulations were performed in the Reaction Ensemble using the continuous fractional component Monte Carlo method at temperatures of 293, 333, and 353 K. The resulting computed equilibrium concentrations are in excellent agreement with experimental data. The effect of different reaction pathways was investigated. For a complete understanding of the equilibrium speciation, it is essential to take all elementary reactions into account because considering only the overall reaction of CO2 with MEA is insufficient. The effects of electrostatics and intermolecular van der Waals interactions were also studied, clearly showing that solvation of reactants and products is essential for the reaction. The Reaction Ensemble Monte Carlo using the continuous fractional component method opens the possibility of investigating the effects of the solvent on CO2 chemisorption by eliminating the need to study different reaction pathways and concentrate only on the thermodynamics of the system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.5b00160DOI Listing

Publication Analysis

Top Keywords

reaction ensemble
12
monte carlo
12
continuous fractional
12
fractional component
12
ensemble monte
8
carlo continuous
8
component method
8
equilibrium concentrations
8
reaction pathways
8
reaction
7

Similar Publications

Dual DNAzyme amplification-based colorimetric sensing assay for the identification and quantification of tumor-associated miRNAs.

Talanta

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China. Electronic address:

Herein, we present a colorimetric sensing strategy for the identification and quantification of tumor-associated miRNAs based on dual DNAzyme amplification. In this sensing ensemble, the substrate portion of the Pb-dependent 8-17 DNAzyme combines with the G-quadruplex portion to form a hairpin substrate strand. The two split 8-17 DNAzyme strands are partially complementary to the substrate strand and serve as a recognition unit for binding the target miRNA.

View Article and Find Full Text PDF

Tailoring a Transition Metal Dual-Atom Catalyst via a Screening Descriptor in Li-S Batteries.

ACS Nano

December 2024

College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China.

The adsorption-conversion paradigm of polysulfides during the sulfur reduction reaction (SRR) is appealing to tackle the shuttle effect in Li-S batteries, especially based upon atomically dispersed electrocatalysts. However, mechanistic insights into such catalytic systems remain ambiguous, limiting the understanding of sulfur electrochemistry and retarding the rational design of available catalysts. Herein, we systematically explore the polysulfide adsorption-conversion essence via a geminal-atom model system to understand the catalyst roles toward an expedited SRR.

View Article and Find Full Text PDF

Cancer memory as a mechanism to establish malignancy.

Biosystems

December 2024

Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany. Electronic address:

Cancers during oncogenic progression hold information in epigenetic memory which allows flexible encoding of malignant phenotypes and more rapid reaction to the environment when compared to purely mutation-based clonal evolution mechanisms. Cancer memory describes a proposed mechanism by which complex information such as metastasis phenotypes, therapy resistance and interaction patterns with the tumor environment might be encoded at multiple levels via mechanisms used in memory formation in the brain and immune system (e.g.

View Article and Find Full Text PDF

Boosting Formate Production in Electrocatalytic CO Reduction on Bimetallic Catalysts Enriched with In-Zn Interfaces.

ACS Nano

December 2024

School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.

We present an effective strategy for developing the dispersing strong-binding metal In on the surface of weak-binding metal Zn, which modulates the binding energy of the reaction intermediates and further facilitates the efficient conversion of CO to formate. The In-Zn interface (In-Zn2) benefits from the formation of active sites through favorable orbital interactions, leading to a Faradaic efficiency of 82.7% and a formate partial current density of 12.

View Article and Find Full Text PDF

Switching CO-to-Acetate Electroreduction on Cu Atomic Ensembles.

J Am Chem Soc

December 2024

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

The electrocatalytic reaction pathway is highly dependent on the intrinsic structure of the catalyst. CO/CO electroreduction has recently emerged as a potential approach for obtaining C products, but it is challenging to achieve high selectivity for a single C product. Herein, we develop a Cu atomic ensemble that satisfies the appropriate site distance and coordination environment required for electrocatalytic CO-to-acetate conversion, which shows outstanding overall performance with an acetate Faradaic efficiency of 70.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!