It is currently unknown whether the molecular steps of large dense-core vesicle (LDCV) docking and priming are identical to the corresponding reactions in synaptic vesicle (SV) exocytosis. Munc13s are essential for SV docking and priming, and we systematically analyzed their role in LDCV exocytosis using chromaffin cells lacking individual isoforms. We show that particularly Munc13-2 plays a fundamental role in LDCV exocytosis, but in contrast to synapses lacking Munc13s, the corresponding chromaffin cells do not exhibit a vesicle docking defect. We further demonstrate that ubMunc13-2 and Munc13-1 confer Ca(2+)-dependent LDCV priming with similar affinities, but distinct kinetics. Using a mathematical model, we identify an early LDCV priming step that is strongly dependent upon Munc13s. Our data demonstrate that the molecular steps of SV and LDCV priming are very similar while SV and LDCV docking mechanisms are distinct.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798968PMC
http://dx.doi.org/10.7554/eLife.10635DOI Listing

Publication Analysis

Top Keywords

ldcv priming
12
large dense-core
8
dense-core vesicle
8
vesicle exocytosis
8
molecular steps
8
ldcv docking
8
docking priming
8
role ldcv
8
ldcv exocytosis
8
chromaffin cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!