Functionally Distinct Bacterial Cytochrome c Peroxidases Proceed through a Common (Electro)catalytic Intermediate.

Biochemistry

Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.

Published: January 2016

The diheme cytochrome c peroxidase from Shewanella oneidensis (So CcP) requires a single electron reduction to convert the oxidized, as-isolated enzyme to an active conformation. We employ protein film voltammetry to investigate the mechanism of hydrogen peroxide turnover by So CcP. When the enzyme is poised in the active state by incubation with sodium l-ascorbate, the graphite electrode specifically captures a highly active state that turns over peroxide in a high potential regime. This is the first example of an on-pathway catalytic intermediate observed for a bacterial diheme cytochrome c peroxidase that requires reductive activation, consistent with the observed voltammetric response from the diheme cytochrome c peroxidase from Nitrosomonas europaea (Ne), which is constitutively active and does not require the same one electron activation. Mutational analysis at the active site of So CcP confirms that the rate-limiting step involves a proton-coupled single electron reduction of a high valent iron species centered on the low-potential heme, consistent with the same mutation in Ne CcP. The pH dependence of catalysis for wild-type So CcP suggests that reduction shifts the pK(a)'s of at least two amino acids. Mutation of His81 in "loop 1", a surface exposed loop thought to shift conformation during the reductive activation process, eliminated one of the pH dependent features, confirming that the loop 1 shifts, changing the environment of His81 during the rate-limiting step. The observed catalytic intermediate has the same electron stoichiometry and similar pH dependence to that previously reported for Ne CcP, which is constitutively active and therefore hypothesized to follow a different catalytic mechanism. The prominent similarities between the rate-limiting steps of differing mechanistic classes of bCcPs suggest unexpected similarities in the intermediates formed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.5b01162DOI Listing

Publication Analysis

Top Keywords

diheme cytochrome
12
cytochrome peroxidase
12
single electron
8
electron reduction
8
active state
8
catalytic intermediate
8
reductive activation
8
constitutively active
8
rate-limiting step
8
ccp
6

Similar Publications

Redox potential tuning by calcium ions in a novel c-type cytochrome from an anammox organism.

J Biol Chem

December 2024

Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany. Electronic address:

The electrochemical potentials of redox-active proteins need to be tuned accurately to the correct values for proper biological function. Here we describe a diheme cytochrome c with high heme redox potentials of about +350 mV, despite having a large overall negative charge which typically reduces redox potentials. High resolution crystal structures, spectroelectrochemical measurements and high-end computational methods show how this is achieved: each heme iron has a calcium cation positioned next to it at a distance of only 6.

View Article and Find Full Text PDF

Nature has evolved diverse electron transport proteins and multiprotein assemblies essential to the generation and transduction of biological energy. However, substantially modifying or adapting these proteins for user-defined applications or to gain fundamental mechanistic insight can be hindered by their inherent complexity. De novo protein design offers an attractive route to stripping away this confounding complexity, enabling us to probe the fundamental workings of these bioenergetic proteins and systems, while providing robust, modular platforms for constructing completely artificial electron-conducting circuitry.

View Article and Find Full Text PDF

The fully reduced terminal oxidase bd-I isolated from Escherichia coli binds cyanide.

J Inorg Biochem

October 2024

Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia.

Cytochrome bd-I from Escherichia coli belongs to the superfamily of prokaryotic bd-type oxygen reductases. It contains three hemes, b, b and d, and couples oxidation of quinol by dioxygen with the generation of a proton-motive force. The enzyme exhibits resistance to various stressors and is considered as a target protein for next-generation antimicrobials.

View Article and Find Full Text PDF

Spin state switching in the metal center is a crucial phenomenon in many enzymatic reactions in biology. The spin state alteration, a critical step in cytochrome P450 catalysis, is driven most likely through a weak perturbation upon substrate binding in the enzyme, which is still not well clarified. In the current work, the spin state transition of iron(III) from high to intermediate via an admixed state is observed upon a subtle electronic perturbation to the sulphonate moieties coordinated axially to a diiron(III)porphyrin dimer.

View Article and Find Full Text PDF

Cytochrome c (c) is a diheme protein implicated as an electron donor to cbb oxidases in multiple pathogenic bacteria. Despite its prevalence, understanding of how specific structural features of c optimize its function is lacking. The human pathogen Neisseria gonorrhoeae (Ng) thrives in low oxygen environments owing to the activity of its cbb oxidase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!