Modifications on the ligand environment of Milstein ruthenium(II) pincer hydride catalysts have been proposed to fine-tune the activation free energy, ΔG(⧧) for the key step of H2 elimination in the water splitting reaction. This study conducted at the B3LYP level of density functional theory including the solvation effect reveals that changing the bulky t-butyl group at the P-arm of the pincer ligand by methyl or ethyl group can reduce the ΔG(⧧) by a substantial margin, ∼ 10 kcal/mol. The reduction in the steric effect of the pincer ligand causes exothermic association of the water molecule to the metal center and leads to significant stabilization of all the subsequent reaction intermediates and the transition state compared to those of the original Milstein catalyst that promotes endothermic association of the water molecule. Though electron donating groups on the pyridyl unit of the pincer ligand are advantageous for reducing the activation barrier in the gas phase, the effect is only 1-1.4 kcal/mol compared to that of an electron withdrawing group. The absolute minimum of the electrostatic potential at the hydride ligand and carbonyl stretching frequency of the catalyst are useful parameters to gauge the effect of ligand environment on the H2 elimination step of the water splitting reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.5b01471 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
Terminal metal-phosphorus (M-P) complexes are of significant contemporary interest as potential platforms for P-atom transfer (PAT) chemistry. Decarbonylation of metal-phosphaethynolate (M-PCO) complexes has emerged as a general synthetic approach to terminal M-P complexes. M-P complexes that are stabilized by strong M-P multiple bonds are kinetically persistent and isolable.
View Article and Find Full Text PDFNat Chem
January 2025
Instituto de Investigaciones Químicas, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain.
Open-shell systems based on first-row transition metals and their involvement in various catalytic processes are well explored. By comparison, mononuclear open-shell complexes of precious transition metals remain underdeveloped. This is particularly true for Ir complexes, as there is very limited information available regarding their application in catalysis.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States.
A Pt(II) aqua complex supported by mesoporous silica nanoparticle (MSN)-immobilized sulfonated CNN pincer ligand featuring a rigid SiO tether was prepared. This hybrid material was tested as a catalyst in H/D exchange reactions of C(sp)-H bonds of selected aromatic substrates and DO-2,2,2-trifluoroethanol- (TFE-) mixtures or CDCOD acting as a source of exchangeable deuterium. The catalyst immobilization served as a means to not only enable the catalyst's recyclability but also minimize the coordination of sulfonate groups and the metal centers originating from different catalyst's moieties that would preserve reactive Pt(OH) fragments needed for catalytic C-H bond activation.
View Article and Find Full Text PDFOrganometallics
January 2025
Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77842, United States.
Protolysis of AlMe or AlEt with 2-diisopropylphosphinopyrrole () resulted in alane/bis(phosphine) pincer ligands containing two flanking phosphines and a central Al-Me (), Al-Et () unit. Reactions of with [(COD)MI] (COD = 1,5-cyclooctadiene; M = Rh or Ir) in the presence of pyridine produced pincer complexes ( and ) with M supported by the PAlP tridentate ligand, and pyridine, methyl, and iodide as monodentate ligands for Al or M. The analogous reaction of with [(COD)MI] and pyridine resulted in the formation of the analogous compounds and with hydride in place of methyl.
View Article and Find Full Text PDFOrganometallics
January 2025
Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
We report the synthesis and characterization of a series of high- and low-spin dicobalt complexes of the PNNP expanded pincer ligand. Reacting this dinucleating ligand in its neutral form with two equiv of CoCl(tetrahydrofuran) yields a high-spin dicobalt complex featuring one Co inside and one Co outside of the dinucleating pocket. Performing the same reaction in the presence of two equivalents of KOtBu provides access to a high-spin dicobalt complex wherein both Co centers are bound within the PNNP pocket, and this complex also features a bridging OtBu ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!