Purpose: To analyze the axial displacement of external and internal implant-abutment connection after cyclic loading.
Materials And Methods: Three groups of external abutments (Ext group), an internal tapered one-piece-type abutment (Int-1 group), and an internal tapered two-piece-type abutment (Int-2 group) were prepared. Cyclic loading was applied to implant-abutment assemblies at 150 N with a frequency of 3 Hz. The amount of axial displacement, the Periotest values (PTVs), and the removal torque values(RTVs) were measured. Both a repeated measures analysis of variance and pattern analysis based on the linear mixed model were used for statistical analysis. Scanning electron microscopy (SEM) was used to evaluate the surface of the implant-abutment connection.
Results: The mean axial displacements after 1,000,000 cycles were 0.6 μm in the Ext group, 3.7 μm in the Int-1 group, and 9.0 μm in the Int-2 group. Pattern analysis revealed a breakpoint at 171 cycles. The Ext group showed no declining pattern, and the Int-1 group showed no declining pattern after the breakpoint (171 cycles). However, the Int-2 group experienced continuous axial displacement. After cyclic loading, the PTV decreased in the Int-2 group, and the RTV decreased in all groups. SEM imaging revealed surface wear in all groups.
Conclusion: Axial displacement and surface wear occurred in all groups. The PTVs remained stable, but the RTVs decreased after cyclic loading. Based on linear mixed model analysis, the Ext and Int-1 groups' axial displacements plateaued after little cyclic loading. The Int-2 group's rate of axial displacement slowed after 100,000 cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11607/jomi.3857 | DOI Listing |
3D Print Addit Manuf
October 2024
Department of Biomechanics, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey.
Scaffolds' designs and physical properties have an important place in tissue engineering. Using different biomaterials, scaffolds with other structures can be developed. The thermal and mechanical properties of biomaterials used in producing scaffolds with the fused deposition modeling method are significant for the application's success.
View Article and Find Full Text PDFSci Rep
December 2024
Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
The authors previously developed an online thin film buckling configuration determination method for a mini basket type mapping catheter prototype, which incorporates eight thin film sensor strips. In the prior study, no external force was applied to the thin film, and only axial displacement was adjusted to induce buckling in the thin film. Extending this prior work, a preliminary methodological validation is conducted for an online configuration determination method of thin film buckling under a point contact force.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Division of Orthopaedic and Trauma Surgery, University Hospitals of Geneva, 4 Rue Gabrielle-Perret-Gentil, Geneva, CH-1205, Switzerland.
Purpose: Trochlear dysplasia is found in 3.2% (95% confidence interval (CI) 1.2-6.
View Article and Find Full Text PDFCureus
November 2024
Aerospace Engineering, Universiti Putra Malaysia, Kuala Lumpur, MYS.
Introduction Spinal fusion surgery with pedicle screws is commonly performed to stabilize the spine of osteoporotic patients. However, securing a strong screw fixation in osteoporotic bone presents significant challenges due to the reduced bone density. This study aimed to compare the biomechanical performance in an osteoporotic bone model of pedicle screws inserted using two different techniques, the Jamshidi needle technique and the pedicle probe technique, as well as the influence of tapping on both these techniques.
View Article and Find Full Text PDFFront Surg
December 2024
Department of Orthopedics, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.
Background: Hemophilic arthritis (HA) is associated with significant changes in the morphology of mature knee joints due to abnormal growth plate development. Previous studies have established marked distinctions between the femur and tibia of subjects with Haemophilia and those with osteoarthritis (OA). This study explored the morphological characteristics of the patella and patellofemoral joint in subjects with Haemophilia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!