Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Anatomic femoral tunnel placement in anterior cruciate ligament (ACL) reconstruction is considered to be a key to good primary stability of the knee. There is still no consensus on whether a centrally placed single bundle in the anatomical femoral footprint can compare with anatomic double-bundle (DB) reconstruction.
Purpose/hypothesis: The purpose of this study was to determine knee kinematics after single-bundle ACL reconstruction via the medial portal technique using 2 different femoral tunnel positions and to compare results with those of the anatomic DB technique. The hypotheses were that (1) single-bundle reconstruction using the medial portal technique with a centrally placed femoral tunnel relative to the native footprint (SB-central technique) would more closely restore intact knee kinematics compared with the same reconstruction technique with an eccentric femoral tunnel drilled in the anteromedial bundle footprint (SB-AM technique) and (2) DB reconstruction would result in superior kinematics compared with the SB-central technique.
Study Design: Controlled laboratory study.
Methods: Knee kinematics was examined in 10 fresh-frozen human cadaveric knees using a robotic/universal force-moment sensor system. Kinematics in simulated pivot-shift and 134-N anterior tibial loading tests were determined in different conditions within the same specimen: (1) intact ACL, (2) deficient ACL, (3) SB-AM, (4) SB-central, and (5) DB.
Results: All reconstruction techniques significantly reduced anterior tibial translation (ATT) compared with a deficient ACL at 0°, 15°, 30°, 60°, and 90° in the anterior tibial loading test (P < .01, repeated-measures analysis of variance) and at 0°, 15°, and 30° in the simulated pivot-shift test (P < .001). There were no significant differences in the SB-central group and the DB group compared with the intact ACL. Reconstruction in the SB-AM group resulted in significantly increased ATT compared with the intact ACL in near-to-extension angles in both tests (0°, 15°, and 30°; P < .01). SB-central and DB reconstructions both resulted in significantly reduced ATT, in some tests at ≤30°, compared with SB-AM reconstruction (P < .05). No significant differences between the SB-central and DB groups were found (P > .05).
Conclusion: The SB-central technique restored intact knee kinematics more closely than did SB-AM reconstruction at time zero. There were no differences in knee kinematics between the DB and SB-central techniques.
Clinical Relevance: Anatomic single-bundle ACL reconstruction provides similar knee kinematics as anatomic double-bundle reconstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0363546515611646 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!