Background And Objective: Central venous catheters in the NICU are associated with significant morbidity and mortality because of the risk of central line-associated bloodstream infections (CLABSIs). The purpose of this study was to determine the effect of catheter dwell time on risk of CLABSI.
Methods: Retrospective cohort study of 13,327 infants with 15,567 catheters (93% peripherally inserted central catheters [PICCs], 7% tunneled catheters) and 256,088 catheter days cared for in 141 NICUs. CLABSI was defined using National Health Surveillance Network criteria. We defined dwell time as the number of days from line insertion until either line removal or day of CLABSI. We generated survival curves for each week of dwell time and estimated hazard ratios for CLABSI at each week by using a Cox proportional hazards frailty model. We controlled for postmenstrual age and year, included facility as a random effect, and generated separate models by line type.
Results: Median postmenstrual age was 29 weeks (interquartile range 26-33). The overall incidence of CLABSI was 0.93 per 1000 catheter days. Increased dwell time was not associated with increased risk of CLABSI for PICCs. For tunneled catheters, infection incidence was significantly higher in weeks 7 and 9 compared with week 1.
Conclusions: Clinicians should not routinely replace uninfected PICCs for fear of infection but should consider removing tunneled catheters before week 7 if no longer needed. Additional studies are needed to determine what daily maintenance practices may be associated with decreased risk of infection, especially for tunneled catheters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657598 | PMC |
http://dx.doi.org/10.1542/peds.2015-0573 | DOI Listing |
Anal Chem
December 2024
Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States.
We are developing a unique protein identification method that consists of generating peptides proteolytically from a single protein molecule (i.e., peptide fingerprints) with peptide detection and identification carried out using nanoscale electrochromatography and label-free resistive pulse sensing (RPS).
View Article and Find Full Text PDFNat Sci Sleep
December 2024
Clinical Department of National Clinical Research Center for Respiratory Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China.
Purpose: Chronic intermittent hypoxia (CIH) is considered one of the main pathophysiological mechanisms of obstructive sleep apnea (OSA). CIH can further lead to cognitive dysfunction by inducing processes such as neuroinflammation and oxidative stress. The hippocampus is primarily associated with cognitive functions such as learning and memory.
View Article and Find Full Text PDFOptical imaging of neuronal voltage dynamics is invaluable to studying brain functions. However, high-speed imaging at significant depth is challenging due to the limitations of the short pixel dwell time and the maximum permissible excitation power in tissues. We report high-speed, deep voltage imaging by applying adaptive excitation, which illuminates the regions of interest only.
View Article and Find Full Text PDFMol Cell
December 2024
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA. Electronic address:
Interactions between distal loci, including those involving enhancers and promoters, are a central mechanism of gene regulation in mammals, yet the protein regulators of these interactions remain largely undetermined. The zinc-finger transcription factor (TF) ZNF143/ZFP143 has been strongly implicated as a regulator of chromatin interactions, functioning either with or without CTCF. However, how ZNF143/ZFP143 functions as a looping factor is not well understood.
View Article and Find Full Text PDFBehav Brain Res
December 2024
Department of Psychological & Brain Sciences, Texas A&M University, Psychology Building, Building 0463, 515 Coke St, College Station, TX 77843, United States of America; Texas A&M Institute for Neuroscience, Texas A&M University, Interdisciplinary Life Sciences Building (ILSB), Room 3148 | 3474 TAMU, College Station, TX 77843-3474, United States of America. Electronic address:
Cognitive flexibility, the brain's ability to adjust to changes in the environment, is a critical component of executive functioning. Previous literature shows a robust relationship between reward dynamics and flexibility: flexibility is highest when reward changes, while flexibility decreases when reward remains stable. The purpose of this study was to examine the role of uncertain reward in a voluntary task switching paradigm on behavior, pupillometry, and eye gaze.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!