Excitons in Organics Using Time-Dependent Density Functional Theory: PPV, Pentacene, and Picene.

J Chem Theory Comput

Max-Planck-Institut für Mikrostrukturphysik , Weinberg 2, D-06120 Halle, Germany.

Published: April 2015

We apply the bootstrap kernel within time-dependent density functional theory to study the one-dimensional chain of polymer polyphenylenevinylene and molecular crystals of picene and pentacene. The absorption spectra of poly(p-phenylenevinylene) has a bound excitonic peak that is well-reproduced. Pentacene and picene, electronically similar materials, have remarkably different excitonic physics, and this difference is also well captured. We show that the inclusion of local-field effects dramatically changes the spectra of both picene and pentacene but not for poly(p-phenylenevinylene).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.5b00133DOI Listing

Publication Analysis

Top Keywords

time-dependent density
8
density functional
8
functional theory
8
pentacene picene
8
picene pentacene
8
excitons organics
4
organics time-dependent
4
theory ppv
4
pentacene
4
ppv pentacene
4

Similar Publications

A series of 2-pyridone[α]-fused BOPHYs - were prepared via a two-step procedure involving the preparation of enamine, followed by an intramolecular heterocyclization reaction. In addition to being fully conjugated with the BOPHY core pyridone fragment, BOPHYs and have a pyridine group connected to the BOPHY core via one- or two -CH- groups. New BOPHYs were characterized by spectroscopy as well as X-ray diffraction.

View Article and Find Full Text PDF

Uncommon diterpenoids with diverse frameworks, including one unexpected iodinated oxa-6/6/6/6-tetracyclic diterpene () and its monobrominated 6/6/6-tricyclic analogue () and one novel isodolastane-type diterpene featuring an unusual aromatic 5/7/6-tricyclic ring system () as well as a related known dolastane-type diterpenoid (), were isolated from the South China Sea sponge . Their structures, including absolute configurations, were established by extensive spectroscopic data analysis, X-ray diffraction analysis, and quantum mechanical-nuclear magnetic resonance and time-dependent density functional theory/electronic circular dichroism calculations. A plausible biosynthetic pathway of new compounds - was proposed.

View Article and Find Full Text PDF

A chemical investigation of the soft coral sp. and the sponge sp. from the South China Sea led to the isolation of five steroids, including two new compounds ( and ) and one known natural product ().

View Article and Find Full Text PDF

We present the theory, implementation, and benchmarking of a real-time time-dependent density functional theory (RT-TDDFT) module within the RMG code, designed to simulate the electronic response of molecular systems to external perturbations. Our method offers insights into nonequilibrium dynamics and excited states across a diverse range of systems, from small organic molecules to large metallic nanoparticles. Benchmarking results demonstrate excellent agreement with established TDDFT implementations and showcase the superior stability of our time integration algorithm, enabling long-term simulations with minimal energy drift.

View Article and Find Full Text PDF

Accelerating Fock Build via Hybrid Analytical-Numerical Integration.

J Phys Chem A

January 2025

Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China.

A hybrid analytical-numerical integration scheme is introduced to accelerate the Fock build in self-consistent field (SCF) and time-dependent density functional theory (TDDFT) calculations. To evaluate the Coulomb matrix [], the density matrix is first decomposed into two parts, the superposition of atomic density matrices and the rest = -. While [] is evaluated analytically, [] is evaluated fully numerically [with the multipole expansion of the Coulomb potential (MECP)] during the SCF iterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!