Probing the Locality of Excited States with Linear Algebra.

J Chem Theory Comput

CNRS, Théorie-Modélisation-Simulation, SRSMC, , Université de Lorraine-Nancy, Boulevard des Aiguillettes 54506, Vandoeuvre-lès-Nancy, France.

Published: April 2015

This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct501163bDOI Listing

Publication Analysis

Top Keywords

excited states
12
hilbert direct
8
probing locality
4
locality excited
4
states linear
4
linear algebra
4
algebra article
4
article reports
4
reports novel
4
novel theoretical
4

Similar Publications

In this report, we describe the photoluminescence of a homoleptic uranium(IV) alkoxide complex. Excitation of [Li(THF)][U(O Bu)] leads to the first example of photoluminescence from a well-defined actinide complex originating from an f-f excitation, supported by second order multiconfigurational electronic structure calculations including spin-orbit coupling. These calculations show strong spin-orbit coupling between the excited triplet and singlet states for the 5f-orbital manifold, which leads to a long-lived excited state lifetime of 0.

View Article and Find Full Text PDF

The process of proton translocation in , triggered by light, is powered by the photoisomerization of all--retinal in bacteriorhodopsin (bR). The primary events in bR involving rapid structural changes upon light absorption occur within subpicoseconds to picoseconds. While the three-state model has received extensive support in describing the primary events between the H and K states, precise characterization of each excited state in the three-state model during photoisomerization remains elusive.

View Article and Find Full Text PDF

The analysis of nonadiabatic molecular dynamics (NAMD) data presents significant challenges due to its high dimensionality and complexity. To address these issues, we introduce ULaMDyn, a Python-based, open-source package designed to automate the unsupervised analysis of large datasets generated by NAMD simulations. ULaMDyn integrates seamlessly with the Newton-X platform and employs advanced dimensionality reduction and clustering techniques to uncover hidden patterns in molecular trajectories, enabling a more intuitive understanding of excited-state processes.

View Article and Find Full Text PDF

Bulk photovoltaic effect in a two-dimensional ferroelectric semiconductor α-InSe.

Nanoscale

January 2025

Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China.

The bulk photovoltaic effect, arising from the separation of charge carriers driven by crystal symmetry, is an intriguing physical phenomenon that has been attracting broad interest in the field of photovoltaic applications due to its junction-free nature and potential to surpass the Shockley-Queisser limit. The photovoltaic applications of conventional ferroelectric materials with wide bandgaps (2.7-4 eV) are limited due to their low photocurrent densities and weak photovoltaic response in the visible light region.

View Article and Find Full Text PDF

The quest for color-pure emitters for multicolor bioimaging as well as for ultrahigh definition organic light-emitting diodes demands facile design concepts to avoid tedious synthetic or computational trial-and-error procedures. We have recently presented a simple recipe to construct color-pure blue emitters, which combines basic resonance structure and frontier molecular orbital treatments; this recipe applies to multiresonant type emitters and allows to enlarge the chemical space toward novel structural motifs. In the current work, we show that such fundamental considerations further apply to the structurally entirely different family of xanthene dyes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!