We apply the theory of the nuclear magnetic resonance (NMR) chemical shift for paramagnetic systems to demanding cobalt(II) complexes. Paramagnetic NMR (pNMR) chemical shift results by density-functional theory (DFT) can be very far from the experimental values. Therefore, it is of interest to investigate the applicability of electron-correlated ab initio computational methods to achieve useful accuracy. Here, we use ab initio wave function based electronic structure methods to calculate the pNMR chemical shift within the theoretical framework established recently. We applied the N-electron valence-state perturbation theory (NEVPT2) on three Co(II) systems, where the active space of the underlying complete active space self-consistent field (CASSCF) wave function consists of seven electrons in the five metal 3d orbitals. These complexes have the S = 3/2 electronic ground state consisting of two doublets separated by zero-field splitting (ZFS). To calculate the hyperfine coupling tensor A, DFT was used, while the g- and ZFS-tensors were calculated using the ab initio CASSCF and NEVPT2 methods. These results were combined to obtain the total chemical shifts. The shifts obtained from these calculations are in generally good agreement with the experimental results, in some cases suggesting a reassignment of the signals. The accuracy of this mixed ab initio/DFT approach is very promising for further applications to demanding pNMR problems involving transition metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.5b00193 | DOI Listing |
Analyst
January 2025
Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
Glutathione (GSH) plays an important role in maintaining redox homeostasis in biological systems. Development of reliable glutathione sensors is of great significance to better understand the role of biomolecules in living cells and organisms. Based on the advantages of the photophysical properties of iridium complexes, we proposed a "turn-on" phosphorescent sensor.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany.
The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.
View Article and Find Full Text PDFClin Microbiol Rev
January 2025
Department of Medicine, Division of Pulmonary/Allergy/Critical Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
SUMMARY (the "pneumococcus") is a significant human pathogen. The key determinant of pneumococcal fitness and virulence is its ability to produce a protective polysaccharide (PS) capsule, and anti-capsule antibodies mediate serotype-specific opsonophagocytic killing of bacteria. Notably, immunization with pneumococcal conjugate vaccines (PCVs) has effectively reduced the burden of disease caused by serotypes included in vaccines but has also spurred a relative upsurge in the prevalence of non-vaccine serotypes.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Biosciences and Bioengineering PhD Program, American University of Sharjah, UAE.
Neurological conditions resulting from severe spinal cord injuries, brain injuries, and other traumatic incidents often lead to the loss of essential bodily functions, including sensory and motor capabilities. Traditional prosthetic devices, though standard, have limitations in delivering the required dexterity and functionality. The advent of neuroprosthetics marks a paradigm shift, aiming to bridge the gap between prosthetic devices and the human nervous system.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
LPHE-MS, Faculty of Science, Mohammed V University in Rabat, Morocco.
This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!