Electronic structure approaches for calculating intermolecular interactions have traditionally been benchmarked almost exclusively on the basis of energy-centric metrics. Herein, we explore the idea of utilizing a metric related to geometry. On a diverse series of noncovalently interacting systems of different sizes, from the water dimer to the coronene dimer, we evaluate a variety of electronic structure approximations with respect to their abilities to reproduce coupled-cluster-level geometries. Specifically, we examine Hartree-Fock, second-order Møller-Plesset perturbation theory (MP2), attenuated MP2, scaled MP2, and a number of density functionals, many of which include empirical or nonempirical van der Waals dispersion corrections. We find a number of trends that transcend system size and interaction type. For instance, functionals incorporating VV10 nonlocal correlation tend to yield highly accurate geometries; ωB97X-V and B97M-V, in particular, stand out. We establish that intermolecular distance, as measured by, e.g., the center-of-mass separation of two molecules, is the geometric parameter that deviates most profoundly among the various methods. This property of the equilibrium intermolecular separation, coupled with its accessibility via a small series of well-defined single-point calculations, makes it an ideal metric for the development and evaluation of electronic structure methods.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct501050sDOI Listing

Publication Analysis

Top Keywords

electronic structure
16
structure approaches
8
energies geometries
4
geometries nonbonded
4
nonbonded molecular
4
molecular complexes
4
complexes metrics
4
metrics assessing
4
electronic
4
assessing electronic
4

Similar Publications

Stabilizing large easy-axis type magnetic anisotropy in molecular complexes is a challenging task, yet it is crucial for the development of information storage devices and applications in molecular spintronics. Achieving this requires a deep understanding of electronic structure and the relationships between structure and properties to develop magneto-structural correlations that are currently unexplored in the literature. Herein, a series of five-coordinate distorted square pyramidal Co complexes [Co(L)(X)].

View Article and Find Full Text PDF

The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.

View Article and Find Full Text PDF

Objectives: Dementia, a growing concern globally, affects more than 55 million people-a number projected to rise to 152 million by 2050. Current medications target Alzheimer's disease, the most prevalent form of dementia. This study investigated L.

View Article and Find Full Text PDF

We present a Fourier neural operator (FNO)-based surrogate solver for the efficient optimization of wavefronts in tunable metasurface controls. Existing methods, including the Gerchberg-Saxton algorithm and the adjoint optimization, are often computationally demanding due to their iterative processes, which require numerical simulations at each step. Our surrogate solver overcomes this limitation by providing highly accurate gradient estimations with respect to changes in tunable meta-atoms without the need for direct simulations.

View Article and Find Full Text PDF

A Two-in-One Strategy to Simultaneously Boost the Site Density and Turnover Frequency of Fe-N-C Oxygen Reduction Catalysts.

Angew Chem Int Ed Engl

January 2025

Hunan University, Chemistry and Chemical Engineering, Lushan South Road, Yuelu District, 410082, Changsha, CHINA.

Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe-N4 moieties by the iodine dopants incorporated into the carbon matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!