A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular view of ligands specificity for CAG repeats in anti-Huntington therapy. | LitMetric

Huntington's disease is a fatal and devastating neurodegenerative genetic disorder for which there is currently no cure. It is characterized by Huntingtin protein's mRNA transcripts with 36 or more CAG repeats. Inhibiting the formation of pathological complexes between these expanded transcripts and target proteins may be a valuable strategy against the disease. Yet, the rational design of molecules specifically targeting the expanded CAG repeats is limited by the lack of structural information. Here, we use well-tempered metadynamics-based free energy calculations to investigate pose and affinity of two ligands targeting CAG repeats for which affinities have been previously measured. The first consists of two 4-guanidinophenyl rings linked by an ester group. It is the most potent ligand identified so far, with Kd = 60(30) nM. The second consists of a 4-phenyl dihydroimidazole and 4-1H-indole dihydroimidazole connected by a C-C bond (Kd = 700(80) nM). Our calculations reproduce the experimental affinities and uncover the recognition pattern between ligands' and their RNA target. They also provide a molecular basis for the markedly different affinity of the two ligands for CAG repeats as observed experimentally. These findings may pave the way for a structure-based hit-to-lead optimization to further improve ligand selectivity toward CAG repeat-containing mRNAs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.5b00208DOI Listing

Publication Analysis

Top Keywords

cag repeats
20
affinity ligands
8
cag
6
repeats
5
molecular view
4
view ligands
4
ligands specificity
4
specificity cag
4
repeats anti-huntington
4
anti-huntington therapy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!