Computing excess functions of ionic solutions: the smaller-ion shell model versus the primitive model. 2. Ion-size parameters.

J Chem Theory Comput

Eltron Research & Development Inc., 4600 Nautilus Court South, Boulder, Colorado 80301-3241, United States.

Published: January 2015

A recent Monte Carlo (MC) simulation study of the primitive model (PM) of ionic solutions ( Abbas, Z. et al. J. Phys. Chem. B 2009 , 113 , 5905 ) has resulted in an extensive "mapping" of real aqueous solutions of 1-1, 2-1, and 3-1 binary electrolytes and a list of "recommended ionic radii" for many ions. For the smaller cations, the model-experiment fitting process gave much larger radii than the respective crystallographic radii, and those cations were therefore claimed to be hydrated. In Part 1 (DOI 10.1021/ct5006938 ) of the present work, the above study for the unrestricted PM - dubbed MC-UPM - has been confronted with the Smaller-ion Shell (SiS) treatment ( Fraenkel, D. Mol. Phys. 2010 , 108 , 1435 ), or "DH-SiS", by comparing the range and quality of model-experiment fits of the mean ionic activity coefficient as a function of ionic concentration. Here I compare the ion-size parameters (ISPs) of "best fit" of the two models and argue that since ISPs derived from DH-SiS are identical with (or close to) crystallographic or thermochemical ionic diameters for both cations and anions, and they do not depend on the counterion - they are more reliable, as physicochemical entities, than the PM-derived "recommended ionic radii".

Download full-text PDF

Source
http://dx.doi.org/10.1021/ct500694uDOI Listing

Publication Analysis

Top Keywords

ionic solutions
8
smaller-ion shell
8
primitive model
8
ion-size parameters
8
"recommended ionic
8
ionic radii"
8
ionic
7
computing excess
4
excess functions
4
functions ionic
4

Similar Publications

Ecofriendly and biocompatible biochars derived from waste-branches for direct and efficient solid-phase extraction of benzodiazepines in crude urine sample prior to LC-MS/MS.

Mikrochim Acta

January 2025

School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, China.

Biochars (BCs) derived from waste-branches of apple tree, grape tree, and oak were developed for direct solid-phase extraction (SPE) of five benzodiazepines (BZDs) in crude urine samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination. Scanning electron microscopy, elemental analyzer, X-ray diffractometry, N adsorption/desorption experiments, and Fourier transform infrared spectrometry characterizations revealed the existence of their mesoporous structure and numerous oxygen-containing functional groups. The obtained BCs not only possessed high affinity towards BZDs via π-π and hydrogen bond interactions, but also afforded the great biocompatibility of excluding interfering components from undiluted urine samples when using SPE adsorbents.

View Article and Find Full Text PDF

Lithium complexing strategy based on host-guest recognition for efficient Mg/Li separation.

Water Res

January 2025

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institution Pollution Control & Ecology Security, Shanghai 200092, China. Electronic address:

Ion selective membranes with precise Mg/Li separation have attracted extensive interest in lithium extraction to circumvent the lithium supply shortage. However, realizing this target remains a significant challenge mainly due to a high concentration ratio of Mg/Li as well as the relatively close ionic hydration radius and chemical. Herein, inspired by the host-guest recognition between alkali-metal ions and crown ether (CE), a novel approach was proposed to regulate the membrane internal structure by introducing CE to strengthen the complexation between Li and CE.

View Article and Find Full Text PDF

The complex sorption mechanisms of carbon adsorbents for the diverse group of persistent, mobile, and potentially toxic contaminants (PMs or PMTs) present significant challenges in understanding and predicting adsorption behavior. While the development of quantitative predictive tools for adsorbent design often relies on extensive training data, there is a notable lack of experimental sorption data for PMs accompanied by detailed sorbent characterization. Rather than focusing on predictive tool development, this study aims to elucidate the underlying mechanisms of sorption by applying data analysis methods to a high-quality dataset.

View Article and Find Full Text PDF

The Effects of Morphology and Hydration on Anion Transport in Self-Assembled Nanoporous Membranes.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Ordered nanoporous polymer membranes offer opportunities for systematically probing the mechanisms of ion transport under confinement and for realizing useful materials for electrochemical devices. Here, we examine the impact of morphology and ion hydration on the transport of hydroxide and bromide anions in nanostructured polymer membranes with 1 nm scale pores. We use aqueous lyotropic self-assembly of an amphiphilic monomer, with a polymerizable surfactant to create direct hexagonal (H) and gyroid mesophases.

View Article and Find Full Text PDF

Flotation is an interfacial process involving gas, liquid, and solid phases, where polar ionic promoters significantly influence both gas-liquid and solid-liquid interfaces during low-rank coal (LRC) flotation. This study examines how the structures of hydrophilic groups in cation-anion mixed promoters affect the interfacial flotation performance of LRC pulp using flotation tests, surface tension tests, wetting heat tests, and molecular dynamics simulations. Results indicate that cation-anion mixed promoters enhance the LRC floatability to varying degrees.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!