Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol-gel method. A number of techniques including X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Rutherford backscattering spectrometry (RBS), thermal gravimetric analysis (TGA), Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties of synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution of dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration, catalyst dose and pH on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalyst and gain a better understanding of the process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2015.04.024 | DOI Listing |
J Am Chem Soc
January 2025
Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
Asymmetric catalysis involving a sulfoxide electrophile intermediate presents an efficient methodology for accessing stereogenic-at-sulfur compounds, such as sulfinate esters, sulfinamides, , which have garnered increasing attention in modern pharmaceutical sciences. However, as the aza-analog of sulfoxide electrophiles, the asymmetric issues about electrophilic sulfinimidoyl species remain largely unexplored and represent a significant challenge in sulfur stereochemistry. Herein, we exhibit an anionic stereogenic-at-cobalt(III) complex-catalyzed asymmetric synthesis of chiral sulfinamides via chiral sulfinimidoyl iodide intermediates.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
University of Shanghai for Science and Technology, institute of energy materials science, CHINA.
The utilization of cobalt-based sulfides is constrained by their inherently low conductivity and slow sodium ion diffusion kinetics. Modifying the electronic configuration and constructing heterostructures are promising strategies to enhance intrinsic conductivity and expedite the sodium ion diffusion process. In this study, heterogeneous nanoparticles of Se-substituted CoS2/CoSe2, embedded within heteroatom-modified carbon nanosheet, were synthesized using metal molten salt-assisted dimensionality reduction alongside concurrent sulfurization and selenization techniques.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.
Two-dimensional (2D) materials hold significant potential for the development of neuromorphic computing architectures owing to their exceptional electrical tunability, mechanical flexibility, and compatibility with heterointegration. However, the practical implementation of 2D memristors in neuromorphic computing is often hindered by the challenges of simultaneously achieving low latency and low energy consumption. Here, we demonstrate memristors based on 2D cobalt phosphorus trisulfide (CoPS), which achieve impressive performance metrics including high switching speed (20 ns), low switching energy (1.
View Article and Find Full Text PDFAnal Chem
December 2024
Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
Among the various aflatoxin B1 (AFB1) assays, performing accurate detection is difficult because false positives and false negatives are frequent due to limited sensitivity, expensive equipment, or inadequate pretreatment during operation. Here, an "off-on" switch-type electrochemiluminescence (ECL) aptasensor armed with cobalt-sulfur quantum dots was encapsulated in hollow cobalt-layered double hydroxide nanocages as an enhanced luminescent probe (Co-LDH@QDs), and a ferrocene-modified aptamer (Fc-APT) was used as a luminescent quencher. In general, when Fc-APT was hybridized with complementary DNA modified with a DNA nanotetrahedron, electron transfer between ferrocene and Co-LDH@QDs was facilitated, leading to efficient quenching of the ECL intensity into an "off" state in the absence of AFB1.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
The rational design of multicomponent heterostructure is an effective strategy to enhance the catalytic activity of electrocatalysts for water and seawater electrolysis in alkaline conditions. Herein, MOF-derived nitrogen-doped carbon/nickel-cobalt sulfides coupled vertically aligned Rhenium disulfide (ReS) on carbon cloth (NC-CoNiS@ReS/CC) are constructed via hydrothermal and activation approaches. Experimental and theoretical analysis demonstrates that the strong interactions between multiple interfaces promote electron redistribution and facilitate water dissociation, thereby optimizing *H adsorption energy for the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!