This study investigated the effects of xanthophylls (containing 40% lutein and 60% zeaxanthin; Juyuan Biochemical Co., Ltd., GuangZhou, China) on gene expression associated with carotenoid cleavage enzymes (β-carotene 15, 15'-monooxygenase, BCMO1; and β-carotene 9', 10'-dioxygenase, BCDO2) and retinoid metabolism (lecithin:retinol acyl transferase (LRAT) and STRA6) of breeding hens and chicks. In experiment 1, 432 hens were divided into 3 groups and fed diets supplemented with zero (as the control group), 20, or 40 mg/kg xanthophyll. The liver, duodenum, jejunum, and ileum were sampled at d 35 of the trial. Results showed that 40 mg/kg xanthophyll supplementation increased BCDO2 mRNA in the liver, duodenum, and jejunum; LRAT mRNA in the jejunum; and STRA6 mRNA in the liver, while it decreased LRAT mRNA in the liver. Experiment 2 was a 2 × 2 factorial design. Male chicks hatched from a zero or 40 mg/kg xanthophyll diet of hens were fed a diet containing either zero or 40 mg/kg xanthophylls. The liver, duodenum, jejunum, and ileum were sampled at zero, 7, 14, and 21 d after hatching. Results showed that in ovo xanthophyll modulated carotenoid and retinoid metabolism mainly within one wk after hatching. The maternal effects gradually vanished and dietary effects began to work one to 2 wk after hatching. Dietary xanthophyll regulated carotenoid and retinoid metabolism mainly from 2 wk onward. The xanthophyll regulation of carotenoid and retinoid metabolism also revealed strong tissue specificity. In conclusion, xanthophyll supplementation could modulate carotenoid and retinoid metabolism in different tissues of hens and chicks.

Download full-text PDF

Source
http://dx.doi.org/10.3382/ps/pev335DOI Listing

Publication Analysis

Top Keywords

retinoid metabolism
24
carotenoid retinoid
20
xanthophyll supplementation
12
hens chicks
12
mg/kg xanthophyll
12
liver duodenum
12
duodenum jejunum
12
mrna liver
12
xanthophyll
8
jejunum ileum
8

Similar Publications

G protein-coupled receptors (GPCRs) are a superfamily of transmembrane proteins that initiate signaling cascades through activation of its G protein upon association with its ligand. In all mammalian vision, rhodopsin is the GPCR responsible for the initiation of the phototransduction cascade. Within photoreceptors, rhodopsin is bound to its chromophore 11-cis-retinal and is activated through the light-sensitive isomerization of 11-cis-retinal to all-trans-retinal, which activates the transducin G protein, resulting in the phototransduction cascade.

View Article and Find Full Text PDF

Whether the fat-soluble vitamins A, D, E, and K are associated with development of graft-versus-host disease (GvHD) after allogeneic stem cell transplantation, is unclear. We assessed if the levels of these vitamins were associated with development of GvHD during the first year after transplantation using data from a two-armed randomized nutritional intervention trial. Changes in plasma levels during 1-year follow-up were analyzed using a linear mixed model for repeated measurements.

View Article and Find Full Text PDF

Background: Micronutrient deficiencies are common and play a significant role in the prognosis of many chronic diseases, including heart failure (HF), but their prevalence in HF is not well known. As studies have traditionally focused on causes originating within the intestines, exocrine pancreatic insufficiency (EPI) has been overlooked as a potential contributor. The exocrine pancreas enables the absorption of various (fat-soluble) micronutrients and may be insufficient in HF.

View Article and Find Full Text PDF

Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells.

View Article and Find Full Text PDF

Signaling via retinoic acid receptors mediates decidual angiogenesis in mice and human stromal cell decidualization.

FASEB J

January 2025

Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA.

At the maternal-fetal interface, tightly regulated levels of retinoic acid (RA), the physiologically active metabolite of vitamin A, are required for embryo implantation and pregnancy success. Herein, we utilize mouse models, primary human cells, and pharmacological tools to demonstrate how depletion of RA signaling via RA receptor (RAR) disrupts implantation and progression of early pregnancy. To inhibit RAR signaling during early pregnancy, BMS493, an inverse pan-RAR agonist that prevents RA-induced differentiation, was administered to pregnant mice during the peri-implantation period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!