Arsenic Attenuates GLI Signaling, Increasing or Decreasing its Transcriptional Program in a Context-Dependent Manner.

Mol Pharmacol

Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida (B.L., C.G., E.W., J.L., K.J., Z.W., D.L.F., D.M.N., A.J.C., D.J.R.); General Surgery Center of PLA, Southwest Hospital, Third Military Medical University, Chongqing, China (B.T.); Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, Florida (J.L.); Program in Experimental and Molecular Medicine, Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire (D.L.F.); Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida (D.M.N., P.R.S., P.R., B.A., A.J.C., D.J.R.); Department of Dermatology, University of Alabama, Birmingham, Alabama (M.A.); Department of Genetic Medicine, Weill Medical College of Cornell University, New York, New York (B.W.); Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida (L. W.); Departments of Medicine (P.R.S., P.R., B.A.) and Biochemistry and Molecular Biology (A.J.C., D.J.R.), Miller School of Medicine, University of Miami, Miami, Florida; and Division of Geriatric Medicine and Palliative Care, Miller School of Medicine, University of Miami, Miami, Florida (P.R.)

Published: February 2016

The metalloid arsenic is a worldwide environmental toxicant, exposure to which is associated with many adverse outcomes. Arsenic is also an effective therapeutic agent in certain disease settings. Arsenic was recently shown to regulate the activity of the Hedgehog (HH) signal transduction pathway, and this regulation of HH signaling was proposed to be responsible for a subset of arsenic's biologic effects. Surprisingly, these separate reports proposed contradictory activities for arsenic, as either an agonist or antagonist of HH signaling. Here we provide in vitro and in vivo evidence that arsenic acts as a modulator of the activity of the HH effector protein glioma-associated oncogene family zinc finger (GLI), activating or inhibiting GLI activity in a context-dependent manner. This arsenic-induced modulation of HH signaling is observed in cultured cells, patients with colorectal cancer who have received arsenic-based therapy, and a mouse colorectal cancer xenograft model. Our results show that arsenic activates GLI signaling when the intrinsic GLI activity is low but inhibits signaling in the presence of high-level GLI activity. Furthermore, we show that this modulation occurs downstream of primary cilia, evidenced by experiments in suppressor of fused homolog (SUFU) deficient cells. Combining our findings with previous reports, we present an inclusive model in which arsenic plays dual roles in GLI signaling modulation: when GLIs are primarily in their repressor form, arsenic antagonizes their repression capacity, leading to low-level GLI activation, but when GLIs are primarily in their activator form, arsenic attenuates their activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727125PMC
http://dx.doi.org/10.1124/mol.115.100867DOI Listing

Publication Analysis

Top Keywords

gli signaling
12
gli activity
12
arsenic
10
arsenic attenuates
8
gli
8
context-dependent manner
8
colorectal cancer
8
model arsenic
8
form arsenic
8
signaling
7

Similar Publications

The transcription factor GLI1 is the main and final effector of the Hedgehog signaling pathway, which is involved in embryonic development, cell proliferation and stemness. Whether activated through canonical or non-canonical mechanisms, GLI1 aberrant activity is associated with Hedgehog-dependent cancers, including medulloblastoma, as well as other tumoral contexts. Notwithstanding a growing body of evidence, which have highlighted the potential role of post translational modifications of GLI1, the complex mechanisms modulating GLI1 stability and activity have not been fully elucidated.

View Article and Find Full Text PDF

Sex-Dimorphic Differential Expression Profiles in the Brain of the Adult Chinese Soft-Shelled Turtle, .

Animals (Basel)

November 2024

Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.

The Chinese soft-shelled turtle () is an economically important species in aquaculture, and its growth pattern is characterized by significant sexual dimorphism. However, the underlying molecular mechanisms of this phenomenon have mostly been investigated in the gonadal tissues of , and there are no articles on sex differentiation from the brain of . Here, we analyzed transcriptomes of the brains of adult male and female using high-throughput Illumina sequencing technology, establishing a set of differential genes and differential transcription factors.

View Article and Find Full Text PDF

Transcriptome Profiling Unveils the Mechanisms of Inflammation, Apoptosis, and Fibrosis in the Liver of Juvenile Largemouth Bass Fed High-Starch Diets.

Animals (Basel)

November 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), College of Fisheries, Southwest University, Chongqing 400715, China.

The aim of this study was to explain the mechanism underlying the liver injury of juvenile largemouth bass in response to high-starch diet intake. Three diets were formulated with different starch levels, being abbreviated as treatment LS (low starch, 8.13% starch), MS (medium starch, 14.

View Article and Find Full Text PDF

Embryonic development in humans is controlled by the Hedgehog pathway, which becomes inactive in mature tissues. Except for tissue maintenance and healing, activation of this pathway results in tumorigenesis with only a few exceptions. The drugs currently in use have shown no effectiveness in blocking the key proteins responsible for tumorigenesis.

View Article and Find Full Text PDF

Pirfenidone promotes cell cycle arrest and apoptosis of triple‑negative breast cancer cells by suppressing Hedgehog/GLI1 signaling.

Naunyn Schmiedebergs Arch Pharmacol

December 2024

Department of Thyroid and Breast Surgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.

Article Synopsis
  • Breast cancer, especially triple-negative breast cancer (TNBC), presents a significant challenge due to its aggressive nature and poor prognosis, prompting research into potential treatments like pirfenidone, an FDA-approved drug with anti-fibrotic and emerging anti-tumor properties.
  • In experiments, pirfenidone was shown to reduce cell viability and proliferation in TNBC cell lines (MDA-MB-231 and HCC-1937), shifting more cells into the G0/G1 phase of the cell cycle and inducing apoptosis by altering specific protein expressions related to cell survival and apoptosis.
  • The study revealed that pirfenidone's effectiveness is linked to its suppression of the Hedgehog/GLI1 signaling pathway, as
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!