A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Newly synthesized podophyllotoxin derivative, LJ12, induces apoptosis and mitotic catastrophe in non-small cell lung cancer cells in vitro. | LitMetric

AI Article Synopsis

  • Deoxypodophyllotoxin (DPT) has shown anti-tumor potential, and a new derivative, LJ12, may be more effective with fewer side effects.
  • In vitro studies on A549 human lung cancer cells revealed that LJ12 decreased cell viability significantly more than etoposide, with a half maximal inhibitory concentration of about 0.1 µM.
  • LJ12 induced cell cycle arrest, apoptosis, and mitotic catastrophe, suggesting its potential as a therapeutic agent for non-small cell lung cancer.

Article Abstract

Deoxypodophyllotoxin (DPT), an active compound isolated from a number of herbs and used in traditional medicine, has been reported to exhibit promising anti‑tumor activity. A newly synthesized derivative, N-(1-oxyl‑4'-demethyl-4-deoxyp odophyllic)-L‑methine-4'-piperazine carbamate (LJ12) may have improved antitumor activity and fewer side effects. The present study assessed the effect of LJ12 on cell viability, apoptosis, cell cycle distribution and mitotic catastrophe in A549 human lung cancer cells in vitro. The molecular mechanisms underlying the antitumor activity of LJ12 were also examined. The results demonstrated that LJ12 reduced A549 cell viability in a time‑ and dose‑dependent manner, with a lower half maximal inhibitory concentration of ~0.1 µM, compared with another known DPT derivative, etoposide (10 µM). Flow cytometric analysis showed that LJ12 induced tumor cell arrest at the G2/M phase of the cell cycle. The present study also observed an expected concomitant decrease in the numbers of cells cells in the G0/G1 and S phases. LJ12 was found to upregulate the protein expression levels of Cdc2 and Cyclin B1. Furthermore, LJ12 induced tumor cell apoptosis and the protein expression of B cell lymphoma‑2‑associated X protein, caspase‑3 and p53. The present study also observed the formation of giant, multinucleated cells, indicating that LJ12 induced mitotic catastrophe in the tumor cells. These results indicated that LJ12 has anti‑non‑small cell lung cancer activity in vitro. Further investigations aim to develop LJ12 as a therapeutic agent for the treatment of lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2015.4561DOI Listing

Publication Analysis

Top Keywords

lung cancer
16
mitotic catastrophe
12
lj12 induced
12
lj12
11
cell
9
newly synthesized
8
cell lung
8
cancer cells
8
cells vitro
8
antitumor activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!