Micro-sensors were used to quantify macro kinematics of classical cross-country skiing techniques and measure cycle rates and cycle lengths during on-snow training. Data were collected from seven national level participants skiing at two submaximal intensities while wearing a micro-sensor unit (MinimaxX™). Algorithms were developed identifying double poling (DP), diagonal striding (DS), kick-double poling (KDP), tucking (Tuck), and turning (Turn). Technique duration (T-time), cycle rates, and cycle counts were compared to video-derived data to assess system accuracy. There was good reliability between micro-sensor and video calculated cycle rates for DP, DS, and KDP, with small mean differences (Mdiff% = -0.2 ± 3.2, -1.5 ± 2.2 and -1.4 ± 6.2) and trivial to small effect sizes (ES = 0.20, 0.30 and 0.13). Very strong correlations were observed for DP, DS, and KDP for T-time (r = 0.87-0.99) and cycle count (r = 0.87-0.99), while mean values were under-reported by the micro-sensor. Incorrect Turn detection was a major factor in technique cycle misclassification. Data presented highlight the potential of automated ski technique classification in cross-country skiing research. With further refinement, this approach will allow many applied questions associated with pacing, fatigue, technique selection and power output during training and competition to be answered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14763141.2015.1084033 | DOI Listing |
Scand J Med Sci Sports
January 2025
Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
The maximal oxygen uptake (V̇O) is typically higher in endurance-trained adolescents than in non-endurance-trained peers. However, the specific mechanisms contributing to this remain unclear, as well as the impact of training during this developmental stage. This study aims to compare V̇O and cardiovascular functions between 12-year-old endurance athletes and non-endurance-trained over a 14-month period.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Medical Research Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
Objectives: The objective of this study was to assess the quality of ECG recordings and the concordance between the automatic detection of cardiac arrhythmia episodes by a patch ECG and an insertable cardiac monitor.
Design: Prospective cohort study.
Setting And Participants: Endurance athletes diagnosed with paroxysmal atrial fibrillation (AF) and no other relevant comorbidities participating in a randomised controlled trial on the effects of training adaption.
Front Sports Act Living
December 2024
Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.
Background: The Covid-19 pandemic in 2020 led to disruption of sporting events, with athletes obliged to comply with national lockdown restrictions.
Purpose: To investigate the effect of the Covid-19 pandemic restrictions on national-team XC skiers' annual and weekly training distribution from training diaries, results from submaximal and maximal physiological roller ski tests, and competition results from the International Ski and Snowboard Federation (FIS) world cup.
Methods: Annual and weekly training type (specific, non-specific, strength, other) and intensity distribution (TID) data were collected for 12 German XC-skiers (Tier 4/5; BM: 67 ± 7 kg; age 26 ± 3 years; 6♀: V̇O 61.
Int J Sports Physiol Perform
February 2025
School of Sport Science, UiT The Arctic University of Norway, Tromsø, Norway.
Introduction: Women have generally lower body size and lean- to fat-mass ratio, lower maximal anaerobic power due to a lower muscle mass, and fewer fast-twitch fibers, although they can show higher resistance to fatigue or greater metabolic flexibility than men. These factors are well known and explain the sex differences in endurance sports such as distance running (10%-12%). Several of these factors-particularly the differences in body composition and skeletal-muscle characteristics-may directly impact vertical displacement and uphill performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!