A rapid and effective preparative procedure has been evaluated for the accurate determination of low-energy (40-200 keV) gamma-emitting radionuclides ((210)Pb, (234)Th, (226)Ra, (235)U) in uranium ores and uranium ore concentrates (UOCs) using high-resolution gamma ray spectrometry. The measurement of low-energy gamma photons is complicated in heterogeneous samples containing high-density mineral phases and in such situations activity concentrations will be underestimated. This is because attenuation corrections, calculated based on sample mean density, do not properly correct where dense grains are dispersed within a less dense matrix (analogous to a nugget effect). The current method overcomes these problems using a lithium tetraborate fusion that readily dissolves all components including high-density, self-attenuating minerals/compounds. This is the ideal method for dissolving complex, non-volatile components in soils, rocks, mineral concentrates, and other materials where density reduction is required. Lithium borate fusion avoids the need for theoretical efficiency corrections or measurement of matrix matched calibration standards. The resulting homogeneous quenched glass produced can be quickly dissolved in nitric acid producing low-density solutions that can be counted by gamma spectrometry. The effectiveness of the technique is demonstrated using uranium-bearing Certified Reference Materials and provides accurate activity concentration determinations compared to the underestimated activity concentrations derived from direct measurements of a bulk sample. The procedure offers an effective solution for initial nuclear forensic studies where complex refractory minerals or matrices exist. It is also significantly faster, safer and simpler than alternative approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2015.07.047 | DOI Listing |
Sci Rep
December 2024
Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01605, USA.
Multicellular spheroids embedded in 3D hydrogels are prominent in vitro models for 3D cell invasion. Yet, quantification methods for spheroid cell invasion that are high-throughput, objective and accessible are still lacking. Variations in spheroid sizes and the shapes of the cells within render it difficult to objectively assess invasion extent.
View Article and Find Full Text PDFBraz J Microbiol
December 2024
Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil.
Microbes employ a variety of mechanisms, encompassing chemical signaling (e.g., quorum-sensing molecules) and genetic processes like horizontal gene transfer (HGT), to engage in interactions.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Accurate forecasting of energy consumption demand is crucial to optimize resources and achieve sustainable development goals. However, the energy system is affected by many factors, which are complex and highly uncertain. Therefore, a novel grey model (IBCFGMP (1,1,N)) is proposed, integrating multiple optimization techniques such as background value optimization, initial condition optimization, fractional-order accumulation optimization, and grey action quantity optimization.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Paediatric Endocrinology, Vrije Universiteit Brussel, UZ Brussel, Laarbeeklaan 110, Brussels, 1090, Belgium.
Up to 80% of children/adolescents with Graves' disease (GD) may require second-line treatment with either surgery or radioactive iodine (RAI) therapy after treatment with antithyroid drugs. These interventions aim to induce permanent hypothyroidism, but are not always successful. We aimed to evaluate the initial success rate (within the first year) of RAI treatment and its determining factors as second-line treatment in teenagers with GD.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
Transcriptional regulation allows cells to execute developmental programs, maintain homeostasis, and respond to intra- and extracellular signals. Central to these processes are promoters, which in eukaryotes are sequences upstream of genes that bind transcription factors (TFs) and which recruit RNA polymerase to initiate mRNA synthesis. Valuable tools for studying promoters include reporter genes, which can be used to indicate when and where genes are activated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!