Electrospun cellulose acetate supported Ag@AgCl composites with facet-dependent photocatalytic properties on degradation of organic dyes under visible-light irradiation.

Carbohydr Polym

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China. Electronic address:

Published: January 2016

Electrospun cellulose acetate (CA) membrane was employed as a support that provided sites for AgCl crystals in situ growth. The Ag@AgCl crystals on electrospun CA composites with exposed {100} and {111} facets were fabricated at room temperature by a double diffusion technique. The crystal structure, morphology, composition, and absorption light ability of CA supported Ag@AgCl were characterized utilizing X-ray powder diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflection-infrared intensity (ATR-IR), X-ray photoelectron spectroscopy measurements (XPS), energy dispersive spectrometer (EDS) and ultraviolet-visible (UV-vis) diffuse reflectance spectra, respectively. The photocatalytic activity of the catalysts was evaluated using methyl orange (MO) as a target. The CA supported cubic Ag@AgCl catalyst exhibited much higher catalytic activity than octahedral catalyst in terms of the degradation of MO under visible light. The 10mg CA based cubes could completely degrade MO (10 mg L(-1)) in 160 min. The photocatalyst still exhibited a good catalytic ability after three times.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2015.09.009DOI Listing

Publication Analysis

Top Keywords

electrospun cellulose
8
cellulose acetate
8
supported ag@agcl
8
acetate supported
4
ag@agcl
4
ag@agcl composites
4
composites facet-dependent
4
facet-dependent photocatalytic
4
photocatalytic properties
4
properties degradation
4

Similar Publications

Background: As sex pheromones are environmentally friendly and specific, they are often used to monitor and control oriental fruit moths (OFMs). Currently, non-biodegradable polymers are commonly employed as carriers to prepare controlled sex pheromone release systems for plant protection. Electrospinning is a relatively simple technique for preparing biodegradable nanofibers that allows for the controlled release of sex pheromones.

View Article and Find Full Text PDF

Antimicrobial resistance poses a growing threat to public health globally. Multidrug resistant Pseudomonas (P.) aeruginosa is detected in many infected wounds and is very challenging to treat with antibiotics.

View Article and Find Full Text PDF

Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.

View Article and Find Full Text PDF

Highly Elastic Spongelike Hydrogels for Impedance-Based Multimodal Sensing.

ACS Nano

January 2025

School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.

Hydrogel-based sensors have been widely studied for perceiving the environment. However, the simplest type of resistive sensors still lacks sensitivity to localized strain and other extractable data. Enhancing their sensitivity and expanding their functionality to perceive multiple stimuli simultaneously are highly beneficial yet require optimal material design and proper testing methods.

View Article and Find Full Text PDF

Development of Betalain-immobilized polylactic acid nanofibers as a green and sustainable sensor for toxic ammonia.

Int J Biol Macromol

December 2024

National Research Centre (Scopus Affiliation ID 60014618), Textile Industries Research Division, Pre-treatment and Finishing of Cellulose Based Textiles Department, 33 El-Buhouth St., (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.

Ammonia has been an important industrial colorless agent. Exposure to gaseous ammonia results in organ damage or even death. Herein, an environmentally friendly colorimetric detector for aqueous and gaseous ammonia was prepared utilizing vapochromic polylactic acid nanofibers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!