Electrospun cellulose acetate (CA) membrane was employed as a support that provided sites for AgCl crystals in situ growth. The Ag@AgCl crystals on electrospun CA composites with exposed {100} and {111} facets were fabricated at room temperature by a double diffusion technique. The crystal structure, morphology, composition, and absorption light ability of CA supported Ag@AgCl were characterized utilizing X-ray powder diffraction (XRD), scanning electron microscopy (SEM), attenuated total reflection-infrared intensity (ATR-IR), X-ray photoelectron spectroscopy measurements (XPS), energy dispersive spectrometer (EDS) and ultraviolet-visible (UV-vis) diffuse reflectance spectra, respectively. The photocatalytic activity of the catalysts was evaluated using methyl orange (MO) as a target. The CA supported cubic Ag@AgCl catalyst exhibited much higher catalytic activity than octahedral catalyst in terms of the degradation of MO under visible light. The 10mg CA based cubes could completely degrade MO (10 mg L(-1)) in 160 min. The photocatalyst still exhibited a good catalytic ability after three times.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2015.09.009 | DOI Listing |
Pest Manag Sci
January 2025
College of Plant Protection, Shanxi Agricultural University, Taigu, China.
Background: As sex pheromones are environmentally friendly and specific, they are often used to monitor and control oriental fruit moths (OFMs). Currently, non-biodegradable polymers are commonly employed as carriers to prepare controlled sex pheromone release systems for plant protection. Electrospinning is a relatively simple technique for preparing biodegradable nanofibers that allows for the controlled release of sex pheromones.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK.
Antimicrobial resistance poses a growing threat to public health globally. Multidrug resistant Pseudomonas (P.) aeruginosa is detected in many infected wounds and is very challenging to treat with antibiotics.
View Article and Find Full Text PDFMacromol Biosci
January 2025
Institute for Technical Chemistry, Macromolecular Chemistry, TU Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.
Implant-integrated drug delivery systems that enable the release of biologically active factors can be part of an in situ tissue engineering approach to restore biological function. Implants can be functionalized with drug-loaded nanoparticles through a layer-by-layer assembly. Such coatings can release biologically active levels of growth factors.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore.
Hydrogel-based sensors have been widely studied for perceiving the environment. However, the simplest type of resistive sensors still lacks sensitivity to localized strain and other extractable data. Enhancing their sensitivity and expanding their functionality to perceive multiple stimuli simultaneously are highly beneficial yet require optimal material design and proper testing methods.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Research Centre (Scopus Affiliation ID 60014618), Textile Industries Research Division, Pre-treatment and Finishing of Cellulose Based Textiles Department, 33 El-Buhouth St., (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
Ammonia has been an important industrial colorless agent. Exposure to gaseous ammonia results in organ damage or even death. Herein, an environmentally friendly colorimetric detector for aqueous and gaseous ammonia was prepared utilizing vapochromic polylactic acid nanofibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!