A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Interpolation of daily mean temperature by using geographically weighted regression-Kriging]. | LitMetric

Air temperature is the input variable of numerous models in agriculture, hydrology, climate, and ecology. Currently, in study areas where the terrain is complex, methods taking into account correlation between temperature and environment variables and autocorrelation of regression residual (e.g., regression Kriging, RK) are mainly adopted to interpolate the temperature. However, such methods are based on the global ordinary least squares (OLS) regression technique, without taking into account the spatial nonstationary relationship of environment variables. Geographically weighted regression-Kriging (GWRK) is a kind of method that takes into account spatial nonstationarity relationship of environment variables and spatial autocorrelation of regression residuals of environment variables. In this study, according to the results of correlation and stepwise regression analysis, RK1 (covariates only included altitude), GWRK1 (covariates only included altitude), RK2 (covariates included latitude, altitude and closest distance to the seaside) and GWRK2 (co-variates included altitude and closest distance to the seaside) were compared to predict the spatial distribution of mean daily air temperature on Hainan Island on December 18, 2013. The prediction accuracy was assessed using the maximum positive error, maximum negative error, mean absolute error and root mean squared error based on the 80 validation sites. The results showed that GWRK1's four assessment indices were all closest to 0. The fact that RK2 and GWRK2 were worse than RK1 and GWRK1 implied that correlation among covariates reduced model performance.

Download full-text PDF

Source

Publication Analysis

Top Keywords

environment variables
16
covariates included
12
included altitude
12
geographically weighted
8
air temperature
8
autocorrelation regression
8
account spatial
8
relationship environment
8
altitude closest
8
closest distance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!