The reservoirs distributed in the western part of Haihe River basin play a key role in drinking water supply in the densely populated region. The potential ecological risk of heavy metals stored in the reservoir sediments has drawn more attention during recent decades. In this study, a total of 10 reservoirs in the western Haihe River basin were sampled. The sediment samples were assessed by the Hakanson potential ecological risk evaluation index. The sediments of upstream and downstream rivers were also sampled for comparative analysis with those of the reservoirs. The results indicated the concentration of Cd was significantly higher than the background value in this region, it was 1.67 times of the background value on average and the highest was 2.77 times. The concentration of Pb was higher than the background value for more than half of the reservoirs. The potential ecological risk was evaluated by the toxic coefficient. The ecological risk level was decreased in the order of Cd>As>Pb>Ni>Cu>Cr>Zn. The ecological risk of Cd in most reservoir sediments belonged to a moderate harm. Xidayang Reservior, which supplied the drinking water for Beijing and Baoding, had the highest level of Cd pollution. The ecological risk of Cd in the upstream and downstream rivers was significantly higher than that of the reservoirs. In addition, the ecological risks of Pb, Cu and Ni in the upstream rivers were also higher than the reservoirs. The difference of ecological risks of Zn and Cr was not significant between reservoirs and rivers.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ecological risk
24
ecological risks
12
western haihe
12
haihe river
12
potential ecological
12
heavy metals
8
river basin
8
drinking water
8
ecological
8
reservoir sediments
8

Similar Publications

The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus.

View Article and Find Full Text PDF

Toxicity of antimony in housefly after whole-life-cycle exposure: Changes in growth, development, redox homeostasis, mitochondrial function, and fecundity.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China. Electronic address:

The increasing utilization of antimony (Sb) in manufacturing industries has led to the emergence of Sb contamination in the environment as a significant public health concern. To elucidate the toxicity of Sb and its mechanism of action, this study aimed to investigate the adverse effects of Sb on a cosmopolitan insect, housefly (Musca domestica), under a whole life cycle (from embryonic to adult stage) exposure through the examination of a suite of parameters, including biological, physiological, behavioral, and molecular endpoints. A range of Sb concentrations, including moderate contamination (0.

View Article and Find Full Text PDF

The derivation of water quality criteria (WQC) for antibiotics is influenced by the inclusion of various organisms' toxicity data, including microbial data, though no definitive conclusions have been reached. This study focuses on sulfonamide antibiotics, common in the Yangtze River Delta (YRD), to assess the influences of different organisms' toxicity data on determining WQCs and subsequent evaluation of ecological risks. A total of 263 toxicity data points from eight sulfonamides, including sulfamethoxazole (SMX) and sulfamethazine (SM2), were selected to derive WQCs using Species Sensitivity Distribution (SSD) methods.

View Article and Find Full Text PDF

Emerging contaminants in estuarine sediments, such as bis(2-ethylhexyl) phthalate (DEHP) and titanium dioxide nanoparticles (nTiO), pose ecotoxicological risks that may be exacerbated by co-contamination. This study investigated the impacts of DEHP, nTiO, and their combinations at environmentally relevant concentrations (1, 10, and 100 μg/g) on the soil nematode Caenorhabditis elegans in estuarine-like sediment (14.25‰ salinity).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!