Download full-text PDF

Source

Publication Analysis

Top Keywords

[self-incompatibility plants
4
plants rna
4
rna degradation
4
degradation ubiquitination-mediated
4
ubiquitination-mediated self-/non-self-discrimination]
4
[self-incompatibility
1
rna
1
degradation
1
ubiquitination-mediated
1
self-/non-self-discrimination]
1

Similar Publications

Following the identification of the self-compatibility gene () in diploid potatoes two decades ago, the breeding of inbred based diploid hybrid potatoes made its way. Tetraploid potatoes have a long history of cultivation through domestication and selection. Tetrasomic inheritance, heterozygosity and clonal propagation complicate genetic studies, resulting in a low genetic gain in potato breeding.

View Article and Find Full Text PDF

Phosphatidic Acid Signaling in Modulating Plant Reproduction and Architecture.

Plant Commun

December 2024

Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA. Electronic address:

Article Synopsis
  • Phosphatidic acid (PA) is a type of signaling lipid in plants that plays a crucial role in responding to environmental stresses and regulating key biological processes.
  • Research on mutants lacking PA's metabolizing enzymes and various analytical techniques has shown that PA is essential in various reproductive functions, including pollen tube development and seed formation.
  • The study will review these findings to better understand how PA influences plant reproduction and structure, while also suggesting areas for future research to further clarify its mechanisms of action.
View Article and Find Full Text PDF

Mate limitation in small populations can reduce reproductive fitness, hinder population growth, and increase extinction risk. Mate limitation is exacerbated in self-incompatible (SI) taxa, where shared S-alleles further restrict mating. Theory suggests genetic drift as a predictor of mate limitation and the breakdown of SI systems.

View Article and Find Full Text PDF

Self-incompatibility (SI) is a genetic mechanism to prevent self-fertilization and thereby promote outcrossing in hermaphroditic plant species through discrimination of self and nonself-pollen by pistils. In many SI systems, recognition between pollen and pistils is controlled by a single multiallelic locus (called the S-locus), in which multiple alleles (called S-alleles) are segregating. Because of the extreme level of polymorphism of the S-locus, identification of S-alleles has been a major issue in many SI studies for decades.

View Article and Find Full Text PDF

Premise: Restoration of seminatural field margins can elevate pollinator activity. However, how they support wild plant gene flow through interactions between pollinators and spatiotemporal gradients in floral resources remains largely unknown.

Methods: Using a farm-scale experiment, we tested how mating outcomes (expected heterozygosity and paternity correlation) of the wild, self-incompatible plant Cyanus segetum transplanted into field margins (sown wildflower or grass-legume strips) were affected by the abundance of different pollinator functional groups (defined by species traits).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!