AI Article Synopsis

  • The study investigates the photoconductivity of CdTe nanocrystal films using time-resolved microwave photoconductivity (TRMC).
  • Spherical and tetrapodal CdTe nanocrystals are analyzed for their properties based on surface ligands and annealing temperatures.
  • The research finds that Te(2-) capped CdTe nanocrystals significantly enhance carrier mobility, particularly in sintered tetrapod structures, suggesting that surface termination is important for optimizing charge-carrier movement in bulk films.

Article Abstract

We report on photoconductivity of films of CdTe nanocrystals (NCs) using time-resolved microwave photoconductivity (TRMC). Spherical and tetrapodal CdTe NCs with tunable size-dependent properties are studied as a function of surface ligand (including inorganic molecular chalcogenide species) and annealing temperature. Relatively high carrier mobility is measured for films of sintered tetrapod NCs (4 cm(2)/(V s)). Our TRMC findings show that Te(2-) capped CdTe NCs show a marked improvement in carrier mobility (11 cm(2)/(V s)), indicating that NC surface termination can be altered to play a crucial role in charge-carrier mobility even after the NC solids are sintered into bulk films.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5b02252DOI Listing

Publication Analysis

Top Keywords

cdte ncs
8
carrier mobility
8
photoconductivity cdte
4
cdte nanocrystal-based
4
nanocrystal-based thin
4
films
4
thin films
4
films te2-
4
te2- ligands
4
ligands lead
4

Similar Publications

Chemiluminescence (CL), especially commercialized CL immunoassay (CLIA), is normally performed within the eye-visible region of the spectrum by exploiting the electronic-transition-related emission of the molecule luminophore. Herein, dual-stabilizers-capped CdTe nanocrystals (NCs) is employed as a model of nanoparticulated luminophore to finely tune the CL color with superior color purity. Initialized by oxidizing the CdTe NCs with potassium periodate (KIO), intermediates of the reactive oxygen species (ROS) tend to charge CdTe NCs in both series-connection and parallel-connection routes and dominate the charge-transfer CL of CdTe NCs.

View Article and Find Full Text PDF

In this study, CdTeSe (0 ≤ ≤ 1) and CdTeSe:Gd % ( = 0-8.05) alloy semiconductor nanocrystals (NCs) were prepared by wet chemical method. The presence and composition of the elements in the sample were determined by energy dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

In this work, a potential-resolved electrochemiluminescence (ECL) multiplex immunoassay (MIA) was developed using zirconium-based metal-organic framework (MOF) nanoparticles with intense self-ECL as an anodic ECL tag and CdTe nanocrystals (NCs) as a cathodic ECL tag. ECL luminophore 5,5'-(anthracene-9,10-diyl)diisophthalic acid (HADIP) and coreactant hexamethylenetetramine (HMT) bound to zirconium nodes in the MOF, giving Zr-ADIP-HMT nanoparticles. Benefiting from the intrareticular charge transfer (ICT) between the oxidized ligands of HADIP and HMT via hydrogen bonds, the intense self-ECL from Zr-ADIP-HMT was applied to the potential-resolved ECL MIA without an exogenous anodic coreactant, which can eliminate detrimental effects of multiplex coreactants and anodic ECL emission from CdTe NCs.

View Article and Find Full Text PDF

Dual-potential encoded electrochemiluminescence for multiplexed gene assay with one luminophore as tag.

Biosens Bioelectron

September 2023

School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China. Electronic address:

Multiplexed gene assay for simultaneously detecting the multi-targets of nucleic acids is strongly anticipated for the accurate diseases diagnosis and prediction, and all commercial available gene assays for IVD are a kind of single-target assay. Herein, a dual-potential encoded and coreactant-free electrochemiluminescence (ECL) strategy is proposed for the multiplexed gene assay, which can be conveniently carried out by directly oxidizing the same luminescent tag of dual-stabilizers-capped CdTe nanocrystals (NCs). The CdTe NCs linked with sulfhydryl-RNA via Cd-S bond merely exhibits one ECL process around 0.

View Article and Find Full Text PDF

The method of affordable colloidal synthesis of nanocrystalline CuZnSnS (CZTS) is developed, which is suitable for obtaining bare CZTS nanocrystals (NCs), cation substituted CZTS NCs, and CZTS-based hetero-NCs. For the hetero-NCs, the synthesized in advance NCs of another material are introduced into the reaction solution so that the formation of CZTS takes place preferably on these "seed" NCs. Raman spectroscopy is used as the primary method of structural characterization of the NCs in this work because it is very sensitive to the CZTS structure and allows to probe NCs both in solutions and films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!