The anticodon nuclease (ACNase) PrrC is silenced by a DNA restriction-modification (RM) protein and activated by a phage T4-encoded restriction inhibitor. The activation is driven by GTP hydrolysis while dTTP, which accumulates during the infection, stabilizes the active form. We show here, first, that the ABC-ATPase N-domains of PrrC can accommodate the two nucleotides simultaneously. Second, mutating a sequence motif that distinguishes the N-domain of PrrC from typical ABC-ATPases implicates three residues in the specificity for dTTP. Third, failure to bind dTTP or its deprivation hastened the centrifugal sedimentation of PrrC, possibly due to exposed sticky PrrC surfaces. Fourth, dTTP inhibited the GTPase activity of PrrC, probably by preventing GDP from leaving. These observations, correlated with relevant traits of a related ACNase, further suggest that PrrC utilizes GTP at canonical ABC-ATPase sites and binds dTTP to distinct sites exposed upon disruption of the ACNase-silencing interaction with the RM partner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2015.10.012DOI Listing

Publication Analysis

Top Keywords

anticodon nuclease
8
acnase prrc
8
prrc
7
dttp
5
dual nucleotide
4
nucleotide specificity
4
specificity determinants
4
determinants infection
4
infection aborting
4
aborting anticodon
4

Similar Publications

Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread.

View Article and Find Full Text PDF

As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNA), resulting in codon-specific ribosomal pausing and stress signaling.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) in bacteriophage genomes are widespread across bacterial host genera, but their exact function has remained unclear for more than 50 years. Several hypotheses have been proposed, and the most widely accepted one is codon compensation, which suggests that phages encode tRNAs that supplement codons that are less frequently used by the host. Here, we combine several observations and propose a new hypothesis that phage-encoded tRNAs counteract the tRNA-depleting strategies of the host using enzymes such as VapC, PrrC, Colicin D, and Colicin E5 to defend from viral infection.

View Article and Find Full Text PDF
Article Synopsis
  • Endoribonuclease toxins, or ribotoxins, are produced by bacteria and fungi to deal with stress, outcompete other species, or combat viruses.
  • PrrC, a bacterial ribotoxin, specifically targets and cuts tRNA at the anticodon loop, with in vitro studies indicating that a modification called threonylcarbamoyl adenosine (tA) is crucial for its function, although this had not been proven in living organisms.
  • Using a new sensitive detection method, researchers found that while a Streptococcus mutans mutant lacking the normal tA synthesis gene (tsaE) had significantly less tA (93% less), it was still present, indicating tA is not essential for S
View Article and Find Full Text PDF

Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!