The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 µm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic immunity and the long-term stability (on 7 days). These three indicators are assessed from data acquired during the LHC operation in 2015 and compared with those of LVDTs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701298 | PMC |
http://dx.doi.org/10.3390/s151128592 | DOI Listing |
J Biomech
January 2025
Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada. Electronic address:
Spine kinematics are commonly measured by external sensors such as motion capture and accelerometers. However, these skin-based measures cannot directly capture intervertebral motion of the lumbar spine. To date, research in this area has focused on the estimation of intervertebral kinematics using static trials but no study has analyzed agreement throughout the dynamic range of motion.
View Article and Find Full Text PDFPhysiol Meas
January 2025
Chair of Measurements and Sensor Technology, Technische Universitat Chemnitz, Reichenhainerstrasse 70, Chemnitz, 09111, GERMANY.
Objective: Electrical Impedance Tomography (EIT) is a non-invasive technique used for lung imaging. A significant challenge in EIT is reconstructing images of deeper thoracic regions due to the low sensitivity of boundary voltages to internal conductivity variations. The current injection pattern is decisive as it influences the current path, boundary voltages, and their sensitivity to tissue changes.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.
Real-time monitoring of hemodynamics is crucial for diagnosing disorders within implanted vascular grafts and facilitating timely treatment. Integrating vascular grafts with advanced flexible electronics offers a promising approach to developing smart vascular grafts (SVGs) capable of continuous hemodynamic monitoring. However, most existing SVG devices encounter significant challenges in practical applications, particularly regarding biomechanical compatibility and the effective evaluation of vascular status.
View Article and Find Full Text PDFJ Infect Public Health
January 2025
Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, Ontario M5T 3M7, Canada; Department of Civil & Mineral Engineering, 35 St. George St, Toronto, Ontario M5S 1A4, Canada.
Throughout the COVID-19 pandemic, Canadian public health advisors and politicians have shared mixed messages about the utility of portable air filters (PAFs) for mitigating the transmission of airborne infectious diseases. Some public health advisors and decision-makers have also suggested that PAFs are cumbersome or require expert advice. We take this opportunity to review evidence and address myths about PAFs.
View Article and Find Full Text PDFWearable sensors with multiple functions are attracting significant attention due to their broad applications in health monitoring and human-computer interaction. Despite significant progress in wearable sensors, it is a significant challenge to monitor temperature and stress simultaneously with a single sensor. A wearable multifunctional optical sensor based on Er/Yb co-doped GdO nanoparticles and a tapered U-shaped fiber is proposed to monitor both temperature and stress in this paper.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!