Chlamydia trachomatis infections demonstrate remarkable differences in clinical course that are approximately 40% based on host genetic variation. Here, we study the single nucleotide polymorphisms (SNPs) and their haplotypes in TLR2, TLR4 and TLR9 (TLR2 +2477G>A; TLR2 -16934T>A; TLR4+896A>G; TLR9 -1237T>C and TLR9 +2848G>A) in relation to the susceptibility to, and severity of C. trachomatis infections. We analysed the five SNPs in a cohort of 770 Dutch Caucasian women either attending a sexually transmitted diseases outpatient clinic (n = 731) or having complaints of subfertility (n = 39). Haplotype analyses showed a trend for TLR2 haplotype I (-16934T/+2477G) to protect against the development of symptoms and tubal pathology (Ptrend = 0.03) after Chlamydia infection. In the susceptibility cohort, TLR9 haplotype III (-1237C/+2848A) showed a significant decreasing trend in the development of symptoms after C. trachomatis infection (P = 0.02, OR: 0.55, 95%CI: 0.33-0.91). Logistic regression of the TLR2 haplotypes, TLR4+896A>G, and TLR9 haplotypes showed that the TLR2 haplotype combinations AG-TA and AG-TG confer risk (OR 3.4 (P = 0.01) and 1.6 (P = 0.03)), while the TLR9 haplotype combination TG-TA protects against C. trachomatis infections (OR: 0.4, P = 0.004). Our study shows that both TLR2 and TLR9 genes and SNP combinations do influence the clinical course of Chlamydia infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882084 | PMC |
http://dx.doi.org/10.1093/femspd/ftv107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!