Electrospinning has been widely used to fabricate scaffolds imitating the structure of natural extracellular matrix (ECM). However, conventional electrospinning produces tightly compacted nanofiber layers with only small superficial pores and a lack of bioactivity, which limit the usefulness of electrospinning in biomedical applications. Thus, a porous poly(ε-caprolactone) (PCL)/gelatin composite electrospun scaffold with crater-like structures was developed. Porous crater-like structures were created on the scaffold by a gas foaming/salt leaching process; this unique fiber structure had more large pore areas and higher porosity than the conventional electrospun fiber network. Various ratios of PCL/gelatin (concentration ratios: 100/0, 75/25, and 50/50) composite electrospun scaffolds with and without crater-like structures were characterized by their microstructures, surface chemistry, degradation, mechanical properties, and ability to facilitate cell growth and infiltration. The combination of PCL and gelatin endowed the scaffold with both structural stability of PCL and bioactivity of gelatin. All ratios of scaffolds with crater-like structures showed fairly similar surface chemistry, degradation rates, and mechanical properties to equivalent scaffolds without crater-like structures; however, craterized scaffolds displayed higher human mesenchymal stem cell (hMSC) proliferation and infiltration throughout the scaffolds after 7-day culture. Therefore, these results demonstrated that PCL/gelatin composite electrospun scaffolds with crater-like structures can provide a structurally and biochemically improved three-dimensional ECM-mimicking microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5206917PMC
http://dx.doi.org/10.1002/jbm.a.35614DOI Listing

Publication Analysis

Top Keywords

crater-like structures
28
composite electrospun
16
scaffolds crater-like
16
electrospun scaffolds
12
scaffolds
8
porous crater-like
8
pcl/gelatin composite
8
surface chemistry
8
chemistry degradation
8
mechanical properties
8

Similar Publications

Bubble Drainage Assisted Fabrication of Polyamide Membranes with Crater-like Structures for Efficient Desalination.

Nano Lett

November 2024

Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Bubble drainage (BD) occurs in various natural phenomena and industrial activities, in which bubbles rise toward the water surface and create a progressively thinned two-sided liquid film, called a lamella. Surfactant, as an important regulator in the BD process, not only assembles on both sides of the lamellae, generating a configuration of lamellae sandwiched by monolayers of surfactants (lamellae/MS), but also induces interfacial deformation by lowering interfacial tension. Herein, we developed a strategy of BD assisted interfacial polymerization for the fabrication of polyamide (PA) membranes.

View Article and Find Full Text PDF

Effects of different substrate ratios on the enrichment of anammox bacteria at low substrate concentration.

Chemosphere

September 2024

School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou, 730070, PR China. Electronic address:

Anammox bacteria (AnAOB) can be easily enriched under high temperatures and high substrate concentrations, while the application of the mainstream anammox process in low substrate municipal sewage is still relatively uncommon. Therefore, this study investigated the enrichment of AnAOB under conditions of low ammonia nitrogen and nitrite concentration at 25 °C. Results showed that using inoculated aerobic sludge, four ASBRs (R1, R2, R3 and R4) were successfully initiated with different influent substrate (NO-N/NH-N) ratios of 1.

View Article and Find Full Text PDF

Superhydrophobic surfaces have attracted significant attention for their ability to prevent ice formation and facilitate deicing without requiring external energy. However, these surfaces are often vulnerable to damage from external forces, leading to functional failure due to poor mechanical stability, which limits their widespread use. Drawing inspiration from the hierarchical groove of rose petals and the micropapillae of lotus leaves, a simple laser-based method is proposed to create a superhydrophobic surface with a micro/nano hierarchical crater-like structure (HCLS).

View Article and Find Full Text PDF

Regenerative medicine is an interdisciplinary field aiming at restoring pathologically damaged tissues and whole organs by cell transplantation in combination with proper supporting scaffolds. Gelatine-based ones are very attractive due to their biocompatibility, rapid biodegradability, and lack of immunogenicity. Gelatine-based composite hydrogels, containing strengthening agents to improve their modest mechanical properties, have been demonstrated to act as extracellular matrices (ECMs), thus playing a critical role in "organ manufacturing".

View Article and Find Full Text PDF

Monodispersed polyethylene glycol diacrylate (PEGDA)/acrylic acid (AA) microgels with a tuneable negative charge and macroporous internal structure have been produced using a Lego-inspired droplet microfluidic device. The surface charge of microgels was controlled by changing the content of AA in the monomer mixture from zero (for noncharged PEGDA beads) to 4 wt%. The macroporosity of the polymer matrix was introduced by adding 20 wt% of 600-MW polyethylene glycol (PEG) as a porogen material into the monomer mixture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!