Objective: Motor function tests are used clinically and in research in children, particularly in those with neuromuscular disorders. Timed function tests are recommended in the follow-up of patients with neuromuscular disorders. This study was designed to know how healthy children perform on simple timed motor function tests.
Material And Methods: In a cross-sectional observational study, 345 children aged 2-12 years, followed at the Federal University of Rio de Janeiro's Institute of Paediatric, were evaluated. To be eligible they had to have acquired independent walking before the age of 14 months, be able to cope and willing to participate in the study. Anthropometric and vital signs were verified, as well as contact with smokers. The following timed motor function tests were measured: time to rise from the floor (TRF), time to walk 10 meters (10MWT) and time to run 10 meters (10MRT).
Results: Improvement in time to perform those motor functions was found to occur in healthy preschool children. Stabilisation of mean times for those motor functions was seen thereafter: TRF of 1.2 s, 10MWT of 10 s and 10MRT of 5 s.
Conclusions: Walking and rising speed improve with age in preschoolers, as expected, and is shown to occur up to a plateau level. Our findings for the 10MWT, 10MRT and TRF are in line with those published in 2008 for the 6 minute walk test (6MWT). The motor functions used in the present study require less time and space than the ones in the 6MWT. They should be considered more universally applicable. Those tests could be used in childcare clinics as a screening for motor disorders such as the neuromuscular diseases.
Trial Registration Number: 1.098.302.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752650 | PMC |
http://dx.doi.org/10.1136/archdischild-2014-307396 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405.
Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, University of Georgia, Athens, Georgia, United States of America.
The Helicobacter pylori flagellar motor contains several accessory structures that are not found in the archetypal Escherichia coli and Salmonella enterica motors. H. pylori hp0838 encodes a previously uncharacterized lipoprotein and is in an operon with flgP, which encodes a motor accessory protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!