Collagenase enzymatic fasciotomy is an accepted nonsurgical treatment for disabling hand contractures caused by Dupuytren disease. We conducted a study to investigate use of collagenase in an immunosuppressed population. We retrospectively reviewed data from 2 academic hand surgical practices. Eight patients on chronic immunosuppressive therapies were treated with collagenase for digital contractures between 2010 and 2011. Thirteen collagenase enzymatic fasciotomies were performed in these 8 patients. Mean preinjection contracture was 53.0°. At mean follow-up of 6.7 months, mean magnitude of contracture improved to 12.9°. Mean metacarpophalangeal joint contracture improved from 42.0° to 4.2°. Mean proximal interphalangeal joint contracture improved from 65.8° to 21.7°. Three of the enzymatic fasciotomies were complicated by skin tears. There were no infections. As more patients seek nonsurgical treatment for Dupuytren disease, its safety and efficacy in select cohorts of patients should continue to be evaluated prospectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

collagenase enzymatic
12
contracture improved
12
enzymatic fasciotomy
8
patients chronic
8
nonsurgical treatment
8
dupuytren disease
8
enzymatic fasciotomies
8
joint contracture
8
collagenase
5
contracture
5

Similar Publications

Irisin is a newly discovered 12 kDa messenger protein involved in energy metabolism. Irisin affects signaling pathways in several types of cancer; however, the role of irisin in metastatic melanoma (MM) has not been described yet. We explored the biological effects of irisin in in vitro models of MM cells (HBL, LND1, Hmel1 and M3) capable of the oncogenic activation of BRAF.

View Article and Find Full Text PDF

Reproducibility and Consistency of Isolation Protocols for Fibroblasts, Smooth Muscle Cells, and Epithelial Cells from the Human Vagina.

Cells

January 2025

Reproductive Biology Laboratory, Amsterdam UMC-Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.

(1) Background: For the reconstruction of a human vagina, various surgical procedures are available that are often associated with complications due to their failure to mimic the physiology of the human vagina. We recently developed a vascularized, organ-specific matrix from healthy human vaginal wall tissue with suitable biomechanical properties. A superior graft would require further extensive colonization with autologous vaginal cells to reduce complications upon implantation.

View Article and Find Full Text PDF

This research demonstrates a systematic curve fitting approach for acquiring parametric values of hyperelastic constitutive models for both healthy and enzymatically mediated degenerated cartilage to facilitate finite element modeling of cartilage. Several widely used phenomenological hyperelastic constitutive models were tested to adequately capture the changes in cartilage mechanics that vary with the differential/unequal abundance of matrix metalloproteinases (MMPs). Trauma and physiological conditions result in an increased production of collagenases (MMP-1) and gelatinases (MMP-9), which impacts the load-bearing ability of cartilage by significantly deteriorating its extracellular matrix (ECM).

View Article and Find Full Text PDF

Decoding the MMP14 Integrin Link: Key Player in the Secretome Landscape.

Matrix Biol

January 2025

Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany. Electronic address:

Rapid progress has been made in the exciting field of secretome research in health and disease. The tumor secretome, which is a significant proportion of the tumor proteome, is secreted into the extracellular space to promote intercellular communication and thus tumor progression. Among the many molecules of the secretome, integrins and matrix metalloproteinase 14 (MMP14) stand out as the interplay of adhesion and proteolysis drives invasion.

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration is suspected to affect the distribution of stress and strain near the vertebral endplates and in the underlying bone. This scenario is worsened by the presence of metastatic lesions on the vertebrae (primarily thoracic vertebrae (60-80 %)) which increase the risk of fracture. As such, this study aimed to evaluate the effect of IVD degeneration on the internal volumetric strains and failure modes of human metastatic vertebral bodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!