The amphiphilic block copolymers are composed of various combinations of hydrophilic and hydrophobic block unimers. The variation in unimer ratio alters the surface as well as micelle-forming properties of the block copolymers. These nanoscopic micelles have the ability to encapsulate hydrophobic compounds and act as potential drug carrier. MePEG-PCL copolymers with various block lengths were synthesized by ring-opening polymerization and characterized by HNMR, GPC, WXRD and DSC. The number average molecular weight of the block copolymer was found to vary from 7511 to 21,270 as determined by GPC and HNMR studies. The surface topology of the polymer films was determined by AFM analysis, which shows a smoother surface with increased MePEG contents in the block copolymers. The protein-binding assay indicates a better biocompatibility of the block copolymers in comparison to MePEG or PCL alone. The CMC of the block copolymer provides the information about micelle formations for encapsulation of hydrophobic materials and affects the in vitro release.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636528PMC
http://dx.doi.org/10.1007/s40204-015-0040-4DOI Listing

Publication Analysis

Top Keywords

block copolymers
16
block
8
block copolymer
8
copolymers
6
synthesis evaluation
4
evaluation mepeg-pcl
4
mepeg-pcl diblock
4
diblock copolymers
4
surface
4
copolymers surface
4

Similar Publications

Short Aromatic Blocks Enhance Styrene Conversion in Polymer Cubosome Formation via Polymerization-Induced Self-Assembly.

Macromol Rapid Commun

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.

Polymer cubosomes (PCs) have garnered significant interest in the field of nanomaterials and nanotechnology due to their unique properties and potential applications. However, the fabrication of PCs remains challenging. Polymerization-induced self-assembly (PISA) is recognized as an efficient method for producing a variety of polymer particles, including PCs.

View Article and Find Full Text PDF

Effect of Defined Block Sequence Terpolymers on Antifungal Activity and Biocompatibility.

Macromol Biosci

January 2025

Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia.

Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells.

View Article and Find Full Text PDF

Lactide, possessing two stereocenters and thus three distinct configurations (DD, DL, and LL), serves as a captivating building block for polymers and self-assembly. Notably, polylactide (PLA) exhibits stereocomplexation, displaying heightened interactions between different configurations compared with interactions within the same configuration. This characteristic renders PLA an intriguing subject for investigating self-assembly behavior.

View Article and Find Full Text PDF

Bottlebrush block polymers, characterized by densely grafted side chains extending from a backbone, have recently garnered significant attention. A particularly attractive feature is the accessibility of ordered morphologies with domain spacings exceeding several hundred nanometers, a capability that is challenging to achieve with linear polymers. These large morphologies make bottlebrush block polymers promising for various applications, such as photonic crystals.

View Article and Find Full Text PDF

Spontaneous phase separation of materials is a powerful strategy to generate highly defined 2D nanomorphologies with novel properties and functions. Exemplary are such morphologies in block copolymers or amphiphilic systems, whose formation can be well predicted based on parameters such as volume fraction and shape factor. In contrast, the formation of 2D nanomorphologies is currently unpredictable in materials perfectly defined at the molecular level, in which crystallinity plays a significant role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!