Simocyclinone D8 (1, SD8) has attracted attention due to its highly complex hybrid structure and the unusual way it inhibits bacterial DNA gyrase by preventing DNA binding to the enzyme. Although a hypothesis explaining simocyclinone biosynthesis has been previously proposed, little was proven in vivo due to the genetic inaccessibility of the producer strain. Herein, we report discovery of three new D-type simocyclinones (D9, D10, and D11) produced by Kitasatospora sp. and Streptomyces sp. NRRL B-24484, as well as the identification and annotation of their biosynthetic gene clusters. Unexpectedly, the arrangement of the newly discovered biosynthetic gene clusters is starkly different from the previously published one, despite the nearly identical structures of D8 and D9 simocyclinones. The gene inactivation and expression studies have disproven the role of a modular polyketide synthase (PKS) system in the assembly of the linear dicarboxylic acid. Instead, the new stand-alone ketosynthase genes were shown to be involved in the biosynthesis of the tetraene chain. Additionally, we identified the gene responsible for the conversion of simocyclinone D9 (2, SD9) into D8.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.5b00669 | DOI Listing |
Curr Drug Discov Technol
December 2024
Department of Pharmacy Practice, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamilnadu, 603203, India.
Background: Clopidogrel, an antiplatelet drug commonly used in cardiovascular disease, is metabolized by the liver mainly through CYP2C19. Concomitant use of Proton pump inhibitors along with clopidogrel may affect the potency of clopidogrel by CYP2C19 inhibition. However, a novel PPI, ilaprazole is known to differ in its pharmacokinetic features, given the potential differences between ilaprazole's interactions and their metabolism with clopidogrel.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Key laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
Background: The application of resistant rice varieties and insecticides represents two crucial strategies for managing the brown planthopper (BPH), Nilaparvata lugens (Stål). Insects often employ similar detoxification mechanisms to metabolize plant secondary metabolites and insecticides, which poses a potential risk that BPH population adapted to resistant rice may also obtain resistance to some insecticides.
Results: Here in a BPH population (R-IR56) that has adapted to the resistant rice variety IR56 through continuous selection, the moderate resistance to etofenprox was observed.
Biomed Res Int
January 2025
Center for Personalized Nanomedicine, Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.
Environmental pollution has been a significant concern for the last few years. The leather industry significantly contributes to the economy but is one of Bangladesh's most prominent polluting industries. It is also responsible for several severe diseases such as cancer, lung diseases, and heart diseases of leather workers because they use bleaching agents and chemicals, and these have numerous adverse effects on human health.
View Article and Find Full Text PDFWorld J Diabetes
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
Background: Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus (T2DM) among children and adolescents worldwide. Due to rapid disease progression, severe long-term cardiorenal complications, a lack of effective treatment strategies, and substantial socioeconomic burdens, it has become an urgent public health issue that requires management and resolution. Adolescent T2DM differs from adult T2DM.
View Article and Find Full Text PDFJCEM Case Rep
January 2025
Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
Congenital hypogonadotropic hypogonadism (CHH) can cause delayed secondary sexual characteristics and contribute to juvenile osteoporosis, with multiple causative genes having been reported. We treated a 27-year-old man diagnosed with central hypogonadism, presenting with delayed secondary sexual characteristics and juvenile osteoporosis, using bone resorption inhibitors and testosterone therapy. Genetic testing revealed missense variants both in the fibroblast growth factor receptor 1 () and gonadotropin-releasing hormone receptor () genes, a combination that has not been previously reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!