Purpose: Tissues and biomaterials used for corneal surface repair require fulfilling specific optical standards prior to implantation in the patient. However, there is not a feasible evaluation method to be applied in clinical or Good Manufacturing Practice settings. In this study, we describe and assess an innovative easy-applied photographic-based method (PBM) for measuring functional optical blurring and transparency in corneal surface grafts.
Methods: Plastic compressed collagen scaffolds (PCCS) and multilayered amniotic membranes (AM) samples were optically and histologically evaluated. Transparency and image blurring measures were obtained by PBM, analyzing photographic images of a standardized band pattern taken through the samples. These measures were compared and correlated to those obtained applying the Inverse Adding-Doubling (IAD) technique, which is the gold standard method.
Results: All the samples used for optical evaluation by PBM or IAD were histological suitable. PCCS samples presented transmittance values higher than 60%, values that increased with increasing wavelength as determined by IAD. The PBM indicated that PCCS had a transparency ratio (TR) value of 80.3 ± 2.8%, with a blurring index (BI) of 50.6 ± 4.2%. TR and BI obtained from the PBM showed a high correlation (ρ>|0.6|) with the diffuse transmittance and the diffuse reflectance, both determined using the IAD (p<0.005). The AM optical properties showed that there was a largely linear relationship between the blurring and the number of amnion layers, with more layers producing greater blurring.
Conclusions: This innovative proposed method represents an easy-applied technique for evaluating transparency and blurriness of tissues and biomaterials used for corneal surface repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643926 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142099 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!