Passive Q-switching of a compact Tm:KLu(WO(4))(2) microchip laser diode pumped at 805 nm is demonstrated with a polycrystalline Cr(2+):ZnS saturable absorber. This laser generates subnanosecond (780 ps) pulses with a pulse repetition frequency of 5.6 kHz at 1846.6 nm, the shortest pulse duration ever achieved by Q-switching of ~2 μm lasers. The maximum average output power is 146 mW with a slope efficiency of 21% with respect to the absorbed power. This corresponds to a pulse energy of 25.6 μJ and a peak power of 32.8 kW.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.40.005220DOI Listing

Publication Analysis

Top Keywords

microchip laser
8
saturable absorber
8
subnanosecond tmkluw
4
tmkluw microchip
4
laser q-switched
4
q-switched crzns
4
crzns saturable
4
absorber passive
4
passive q-switching
4
q-switching compact
4

Similar Publications

Dynamics of Blister Actuation in Laser-Induced Forward Transfer for Contactless Microchip Transfer.

Nanomaterials (Basel)

November 2024

School of Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.

The rapid evolution of microelectronics and display technologies has driven the demand for advanced manufacturing techniques capable of precise, high-speed microchip transfer. As devices shrink in size and increase in complexity, scalable and contactless methods for microscale placement are essential. Laser-induced forward transfer (LIFT) has emerged as a transformative solution, offering the precision and adaptability required for next-generation applications such as micro-light-emitting diodes (μ-LEDs).

View Article and Find Full Text PDF

Laser-induced adhesives with excellent adhesion enhancement and reduction capabilities for transfer printing of microchips.

Sci Adv

December 2024

Huanjiang Laboratory, Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Zhejiang, China.

Transfer printing based on tunable and reversible adhesive that enables the heterogeneous integration of materials is essential for developing envisioned electronic systems. An adhesive with both adhesion enhancement and reduction capabilities in a rapid and selective manner is challenging. Here, we report a laser-induced adhesive, featuring a geometrically simple shape memory polymer layer on a glass backing, with excellent adhesion modulation capability for programmable pickup and noncontact printing of microchips.

View Article and Find Full Text PDF

The recent advances in micromanufacturing have been pushing boundaries of the new generation of semiconductor devices, which, in the meantime, brings new challenges in the material and structural characterization - a key step to ensure the device quality through the micromanufacturing process. An ultrafast laser-enable optoacoustic characterization methodology is developed, targeting in situ calibration and delineation of the three-dimensional (3-D), nanoscopic interior features of opaque semiconductor chips. With the guidance of ultrafast electron-phonon coupling effect and velocity-perturbated optical interference, a femtosecond-laser pump-probe set-up based on Sagnac interferometer is configured to generate and acquire picosecond ultrasonic bulk waves (P-UBWs) traversing the microchips.

View Article and Find Full Text PDF

Water environments contaminated by heavy metal ions present significant challenges because these pollutants do not degrade naturally, leading to their gradual bioaccumulation in animals and plants, which ultimately poses an insurmountable threat to human health. Therefore, rapid and accurate detection of heavy metal ions in water is of great significance for environmental protection and disease prevention. In this work, we developed a novel method based on microfluidic electrophoresis coupled with indirect chemiluminescence for the immediate detection of Cd(II), Pb(II) and Hg(II) heavy metal ions.

View Article and Find Full Text PDF

The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!