We report the design and fabrication of nanostructured gradient index microaxicons suitable for integration with optical fibers. A structure with the effective refractive index decreasing linearly from the center to the edges (i.e., an axicon) was designed using a combination of a simulated annealing method and the effective medium theory. The design was verified numerically with beam propagation method simulations. The axicons were made by the modified stack and draw method and integrated with optical fibers. The optical properties of the fabricated elements were measured and showed good agreement with the numerical simulations. The fabricated axicons produced an extended line focus at a distance from about 70 to 160 μm from the lens facet with a minimum FWHM diameter of 8 μm at 90 μm. At smaller distances, an interference pattern is observed both in the experiment and in simulations, which is attributed to the uneven effective refractive index profile at the structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.40.005200 | DOI Listing |
Nano Lett
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
Osmotic power extracts electricity from salinity gradients and provides a viable route toward clean energy. To improve the energy conversion efficiency, common strategies rely on fabricating precisely controlled nanopores to meet the requirements of high ionic conductivity and selectivity. We report ion transport through the free-volume networks in stacked polymer nanospheres for osmotic power harvesting.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India. Electronic address:
This study investigates the interaction of a synthetic bio-relevant molecule with C and BN nanorings, exploring their potential applications in sensing and drug delivery. Employing Density Functional Theory (DFT) at the ωB97XD level with the 6-31G(d,p) basis set, we computed the adsorption and electronic properties of the resulting nanocomplexes. A total of ten distinct configurations were identified for the interactions, with adsorption energies ranging from -6.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China.
In silico methods are increasingly important in predicting the ecotoxicity of engineered nanomaterials (ENMs), encompassing both individual and mixture toxicity predictions. It is widely recognized that ENMs trigger oxidative stress effects by generating intracellular reactive oxygen species (ROS), serving as a key mechanism in their cytotoxicity studies. However, existing in silico methods still face significant challenges in predicting the oxidative stress effects induced by ENMs.
View Article and Find Full Text PDFACS Nano
January 2025
Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil.
Monolayers of transition-metal dichalcogenides, such as MoS, have attracted significant attention for their exceptional electronic and optical properties, positioning them as ideal candidates for advanced optoelectronic applications. Despite their strong excitonic effects, the atomic-scale thickness of these materials limits their light absorption efficiency, necessitating innovative strategies to enhance light-matter interactions. Plasmonic nanostructures offer a promising solution to overcome those challenges by amplifying the electromagnetic field and also introducing other mechanisms, such as hot electron injection.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Ordered nanoporous polymer membranes offer opportunities for systematically probing the mechanisms of ion transport under confinement and for realizing useful materials for electrochemical devices. Here, we examine the impact of morphology and ion hydration on the transport of hydroxide and bromide anions in nanostructured polymer membranes with 1 nm scale pores. We use aqueous lyotropic self-assembly of an amphiphilic monomer, with a polymerizable surfactant to create direct hexagonal (H) and gyroid mesophases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!