Viral infections are able to modify the host's cellular programs, with DNA methylation being a biological intermediate in this process. The extent to which viral infections deregulate gene expression and DNA methylation is not fully understood. In the case of Hepatitis B virus (HBV), there is evidence for an interaction between viral proteins and the host DNA methylation machinery. We studied the ability of HBV to modify the host transcriptome and methylome, using naturally infected primary human hepatocytes to better mimic the clinical setting.Gene expression was especially sensitive to culture conditions, independently of HBV infection. However, we identified non-random changes in gene expression and DNA methylation occurring specifically upon HBV infection. There was little correlation between expression and methylation changes, with transcriptome being a more sensitive marker of time-dependent changes induced by HBV. In contrast, a set of differentially methylated sites appeared early and were stable across the time course experiment. Finally, HBV-induced DNA methylation changes were defined by a specific chromatin context characterized by CpG-poor regions outside of gene promoters.These data support the ability of HBV to modulate host cell expression and methylation programs. In addition, it may serve as a reference for studies addressing the genome-wide consequences of HBV infection in human hepatocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792598PMC
http://dx.doi.org/10.18632/oncotarget.6270DOI Listing

Publication Analysis

Top Keywords

dna methylation
20
hbv infection
16
human hepatocytes
12
hepatitis virus
8
hbv
8
virus hbv
8
primary human
8
viral infections
8
gene expression
8
expression dna
8

Similar Publications

Background: Brain intraparenchymal schwannoma is a rare clinical entity, generally curable with adequate resection.

Methods And Results: We describe a case in a male patient first presenting at 19 months of age, the youngest reported age for this lesion. It also appears to be the first case connected to a germline TSC2 p.

View Article and Find Full Text PDF

DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA.

Lab Chip

January 2025

Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!