Objective: To investigate the relationship between hepatic fat content, circulating triglyceride levels and aortic stiffness in adult and childhood obesity.
Approach And Results: Seventy-seven adults and 18 children across a wide range of body mass index (18.5-52.6 kg/m(2); percentile 8-100) with no identifiable cardiac risk factors underwent; 1H- magnetic resonance spectroscopy to quantify hepatic fat content and magnetic resonance imaging to assess aortic pulse wave velocity (PWV) and regional distensibility. In adults, multivariable regression showed age (β=0.09; P=0.02), liver fat (β=2.5; P=0.04), and serum triglyceride (β=0.47; P=0.01) to be independent predictors of PWV. Age and blood pressure-adjusted, moderated regression showed that 43% of the total negative effect of hepatic fat on PWV is attributable to indirect effects via increased triglyceride (P=0.005). In addition, regional distensibility was positively correlated with hepatic fat (ascending; r=-0.35; descending, r=-0.23; abdominal, r=-0.41; all P<0.001). Similar to that seen in adults, PWV (r=0.72; P<0.001) and abdominal regional distensibility (r=-0.52; P<0.001) were correlated with liver fat in children.
Conclusions: Increasing age, liver fat, and triglyceride are all related to increased aortic stiffness in adults. Even when controlling for the effects of age and blood pressure, hepatic fat has a negative effect on PWV, with substantial indirect effect occurring via increased circulating triglyceride level. This relationship between hepatic fat and aortic stiffness occurs early in the obesity process and is also seen in children. As such, hepatic fat content is a potential therapeutic target to treat the elevated vascular risk in obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/ATVBAHA.115.306561 | DOI Listing |
Antioxid Redox Signal
January 2025
Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. Electronic address:
Background: The liver plays a central role in fat storage, but little is known about physiological fat accumulation during early development. Here we investigated a transient surge in hepatic lipid droplets observed in newborn mice immediately after birth.
Methods: We developed a novel model to quantify liver fat content without tissue processing.
Bioorg Chem
January 2025
State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201 China; University of Chinese Academy of Sciences, Beijing 100049 China. Electronic address:
Non-alcoholic fatty liver disease (NAFLD), also known as metabolic dysfunction- associated with fatty liver disease (MAFLD), is one of the most prevalent chronic liver diseases globally. NAFLD is characterized by the accumulation of liver fat unrelated to excessive alcohol consumption. Non-alcoholic steatohepatitis (NASH) is the disease progression of NAFLD and could develop into cirrhosis and hepatocellular carcinoma.
View Article and Find Full Text PDFPhys Med Biol
January 2025
North Carolina State University, Fitts Woolard Hall, Raleigh, North Carolina, 27695-7908, UNITED STATES.
Motivated by elastography that utilizes tissue mechanical properties as biomarkers for liver disease, with the eventual objective of quantitatively linking histopathology and bulk mechanical properties, we develop a micromechanical modeling approach to capture the effects of fat and collagen deposition in the liver. Specifically, we utilize computational homogenization to convert the microstructural changes in hepatic lobule to the effective viscoelastic modulus of the liver tissue, i.e.
View Article and Find Full Text PDFHepatol Commun
February 2025
Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Background: Although bariatric and metabolic surgical methods, including duodenal-jejunal bypass (DJB), were shown to improve metabolic dysfunction-associated steatotic liver disease (MASLD) in clinical trials and experimental rodent models, their underlying mechanisms remain unclear. The present study therefore evaluated the therapeutic effects and mechanisms of action of DJB in rats with MASLD.
Methods: Rats with MASLD were randomly assigned to undergo DJB or sham surgery.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!