Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Carcinoma-associated fibroblasts found at the interface between a tumor and the normal stroma play several roles in the development of cancer, including cancer initiation, growth, and progression, thereby also affecting patient prognosis. Although recent studies have focused on carcinoma-associated fibroblasts as potential treatment targets, the origin of these fibroblasts remains unclear. One theory suggests that these cells arise from tumor cells undergoing the epithelial-mesenchymal transition, i.e., tumor cells transform into carcinoma-associated fibroblasts. Therefore, in this study, we aimed to elucidate the cellular origin of carcinoma-associated fibroblasts in a mouse xenograft model. Mice were transplanted with human lung cancer cells (H226 and A549 cells). After sacrifice, tumor masses and surrounding tissues were excised. Interestingly, the excised xenograft tissues contained a significant proportion of desmoplastic fibroblasts that exhibited strong expression of α-smooth muscle actin (SMA). Immunohistochemical staining with pan-cytokeratin, vimentin, β-catenin, E-cadherin, and CD34 showed no evidence of the epithelial-mesenchymal transition. Additional evaluation using dual-color silver in situ hybridization with dinitrophenyl-labeled human epidermal growth factor receptor 2 (HER2) and digoxigenin-labeled chromosome 17 centromere probes also showed similar results. In conclusion, our results revealed that the epithelial-mesenchymal transition may not occur in tumor xenograft models, regardless of evidence supporting this phenomenon in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prp.2015.09.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!