Cobalt oxide nanoparticles (Co3O4-NPs) were synthesized using simple urea-based thermal decomposition method. Phase purity and particle size of as-synthesized nanoparticles were characterized through X-ray diffraction pattern (XRD) and transmission electron microscopy. Through XRD morphology of the Co3O4-NPs was found to be variable in size with range of 36 nm. In our present study, we explored the potential cytotoxic and antibacterial effects of Co3O4-NPs in human colorectal types of cancerous cells (HT29 and SW620) and also nine Gram-positive and Gram-negative bacteria. Co3O4-NPs showed promising anticancer activity against HT29 and SW620 cells with IC50 value of 2.26 and 394.5 μg/mL, respectively. However, no significant effect of Co3O4-NPs was observed against bacterial strains. Furthermore, a detailed study has been carried out to investigate the possible mechanism of cell death in HT29 cancer cell line through the analysis of expression level of anti-apoptotic Bcl2 and BclxL markers. Western blot analysis results suggested significant role of Co3O4-NPs exposure in cell death due to apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00775-015-1310-2 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Thessaly, Mechanical Engineering, Leoforos Athinon, Pedion Areos, 383 34, Volos, GREECE.
To accelerate the water dissociation in the Volmer step and alleviate the destruction of bubbles to the physical structure of catalysts during the alkaline hydrogen evolution, an integrated electrode of cobalt oxide and cobalt-molybdenum oxide grown on Ni foam, named CoO-Co2Mo3O8, is designed. This integrated electrode enhances the catalyst-substrate interaction confirmed by a micro-indentation tester, and thus hinders the destruction of the physical structure of catalysts caused by bubbles. Electrochemical testing shows the occurrence of a surface reconstruction of the integrated electrode, and CoO is transformed into Co(OH)2, denoted as Co(OH)2-Co2Mo3O8.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Middle Tennessee State University, 440 Friendship Street, Murfreesboro, TN 37132, USA.
Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58400-850, Brazil.
Over the past 15 years, there has been a significant increase in the search for environmentally friendly energy sources, and transition-metal-based energy storage devices are leading the way in these new technologies. Supercapacitors are attractive in this regard due to their superior energy storage capabilities. Electrode materials, which are crucial components of supercapacitors, such as cobalt-oxide-based electrodes, have great qualities for achieving high supercapacitor performance.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
The sensitive detection of inflammatory biomarkers in gingival crevicular fluid (GCF) is highly desirable for the evaluation of periodontal disease. Luminol-based electrochemiluminescence (ECL) immunosensors offer a promising approach for the fast and convenient detection of biomarkers. However, luminol's low ECL efficiency under neutral conditions remains a challenge.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Republic of Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!