Plant functional traits suggest a change in novel ecological strategies for dominant species in the stages of forest succession.

Oecologia

Key Laboratory of Resource Biology and Biotechnology in Western China, Northwest University, Taibai North Road 229, Xi'an, Shaanxi, China.

Published: March 2016

In forest succession, the ecological strategies of the dominant species that are based on functional traits are important in the determination of both the mechanisms and the potential directions of succession. Thirty-one plots were established in the Loess Plateau region of northern Shaanxi in China. Fifteen leaf traits were measured for the 31 dominant species that represented the six stages of succession, and the traits included four that were related to morphology, seven to stoichiometry and four to physiological ecology. The species from the different successional stages had different patterns of distribution of the traits, and different key traits predicted the turnover of the species during succession. The ash and the cellulose contents were key regulatory factors of species turnover in the early successional communities, and the trait niche forces in sugar and leaf dry mass content might become more important with the progression of succession. When only the three herb stages were considered, a progressive replacement of the ruderal by the competitive-ruderal species occurred in the intermediate stages of succession, which was followed by the stress-tolerant-competitive or the competitive-stress tolerant-ruderal strategists late in the succession. Thus, the different species that occurred in the different stages of succession shared different trait-based ecological strategies. Additionally, these differences occurred concomitantly with a shift toward competitive-stress tolerant-ruderal strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-015-3483-3DOI Listing

Publication Analysis

Top Keywords

ecological strategies
12
dominant species
12
stages succession
12
succession
9
functional traits
8
strategies dominant
8
species
8
forest succession
8
species occurred
8
competitive-stress tolerant-ruderal
8

Similar Publications

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Studying attention to IPCC climate change maps with mobile eye-tracking.

PLoS One

January 2025

Faculty of Philosophy, Philosophy of Science and the Study of Religion, Ludwig Maximilian University of Munich, München, Germany.

Many visualisations used in the climate communication field aim to present the scientific models of climate change to the public. However, relatively little research has been conducted on how such data are visually processed, particularly from a behavioural science perspective. This study examines trends in visual attention to climate change predictions in world maps using mobile eye-tracking while participants engage with the visualisations.

View Article and Find Full Text PDF

Climate change threatens smallholder agriculture and food security in the Global South. While cropland expansion is often used to counter adverse climate effects despite ecological trade-offs, the benefits for diets and nutrition remain unclear. This study quantitatively examines relationships between climate anomalies, forest loss from cropland expansion, and dietary outcomes in Nigeria, Africa's most populous country.

View Article and Find Full Text PDF

Sustainable systems are designed to promote lasting viability and resilience while reducing negative effects on the environment, society, and economy. Like many others, the drug delivery field is facing the challenges of the global environmental crisis. Despite its rapid growth and significant funding, there has been a noticeable slowdown in the rate of advancement, impacting the economy, society, and environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!